A problem of magnetostatics related to thin plates
Jean Descloux; Michel Flueck; Michel V. Romerio
- Volume: 32, Issue: 7, page 859-876
- ISSN: 0764-583X
Access Full Article
topHow to cite
topDescloux, Jean, Flueck, Michel, and Romerio, Michel V.. "A problem of magnetostatics related to thin plates." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.7 (1998): 859-876. <http://eudml.org/doc/193902>.
@article{Descloux1998,
author = {Descloux, Jean, Flueck, Michel, Romerio, Michel V.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {magnetostatics; thin plates; algorithms; inverse magnetic susceptibility; numerical results; Galerkin method},
language = {eng},
number = {7},
pages = {859-876},
publisher = {Dunod},
title = {A problem of magnetostatics related to thin plates},
url = {http://eudml.org/doc/193902},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Descloux, Jean
AU - Flueck, Michel
AU - Romerio, Michel V.
TI - A problem of magnetostatics related to thin plates
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 7
SP - 859
EP - 876
LA - eng
KW - magnetostatics; thin plates; algorithms; inverse magnetic susceptibility; numerical results; Galerkin method
UR - http://eudml.org/doc/193902
ER -
References
top- [1] A. G. ARMSTRONG, A. M. COLLIE, C. J. DISERENS, N. J. NEWMAN, M. SIMKIN and C. W. TROWBRIDGE, New developments in the magnet design program GFUN. Rutherford Laboratory Report RL-5060.
- [2] Sh. AXLER, P. BOURDON and W. RAMEY, Harmonic function theory. Graduate Texts in Mathematics, 137, Springer-Verlag, New York, 1992. Zbl0765.31001MR1184139
- [3] A. BOSSAVIT, On the condition "H normal to the wall" in magnetic field problems. Écoles CEA-EDF-INRIA: Magnétostatique, pages 9-28, INRIA 1987. Zbl0616.65125
- [4] P. G. CIARLET, Plates and junctions in elastic multi-structures. An asymptotic analysis. Masson-Springer Verlag, Paris, 1990. Zbl0706.73046MR1071376
- [5] M. FRIEDMAN, Finite element formulation of the general magnetostatic problem in the space of solenoidal vector functions. Math. of Comp., 43: pp. 415-431, 1984. Zbl0561.65093MR758191
- [6] J. K. HALE and G. RAUGEL, Partial differential equations on thin domains. In Differential equations and mathematical physics. Mathematics in science and engineering, 186, edited by Ch. Bennewitz, Academic Press, Boston, 1992. Zbl0785.35050MR1126691
- [7] H. LE DRET, Problèmes variationnels dans les multi-domaines. Modélisation des jonctions et applications. Masson, Paris, 1991. Zbl0744.73027MR1130395
- [8] J.-L. LIONS, Perturbations singulières dans les problèmes aux limites et en contrôle optimal. Lecture Notes in Mathematics, 323, Springer-Verlag, Berlin, 1973. Zbl0268.49001MR600331
- [9] J. PASCIAK, A new scalar potential formulation of the magnetostatic field problem. Math. of Comp., 43: pp. 433-445, 1984. Zbl0552.65082MR758192
- [10] G. RAUGEL and G. SELL, Équations de Navier-Stokes dans des domaines minces en dimension trois : régularité globale. C. R. Acad. Sci. Paris, Série I, Math. 309 : pp. 299-303, 1989. Zbl0715.35063MR1054239
- [11] F. ROGIER, Mathematical and numerical stùdy of a magnetostatic problem around a thin shield. SIAM J. Numer. Anal., 30: pp. 454-477, 1993. Zbl0773.65086MR1211400
- [12] R. TEMAM and M. ZIANE, Navier-Stokes equations in three-dimensional thin domains with various boundary conditions. Advances in Differential Equations, 1: pp. 499-546, 1996. Zbl0864.35083MR1401403
- [13] M. VAINBERG, Variational method and method of monotone operators in the theory of nonlinear operators. John Wiley and Sons, New York, Toronto, 1973.
- [14] R. DAUTRAY and J.-L. LIONS, Analyse mathématique et calcul numérique pour les sciences et les techniques. Masson, Paris, 1985. Zbl0642.35001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.