Prediction-correction Legendre spectral scheme for incompressible fluid flow

He Li-Ping; Mao De-Kang; Guo Ben-Yu

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 1, page 113-120
  • ISSN: 0764-583X

How to cite

top

Li-Ping, He, De-Kang, Mao, and Ben-Yu, Guo. "Prediction-correction Legendre spectral scheme for incompressible fluid flow." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.1 (1999): 113-120. <http://eudml.org/doc/193905>.

@article{Li1999,
author = {Li-Ping, He, De-Kang, Mao, Ben-Yu, Guo},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {initial-boundary value problem; second-order accuracy in time; higher order accuracy in space},
language = {eng},
number = {1},
pages = {113-120},
publisher = {Dunod},
title = {Prediction-correction Legendre spectral scheme for incompressible fluid flow},
url = {http://eudml.org/doc/193905},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Li-Ping, He
AU - De-Kang, Mao
AU - Ben-Yu, Guo
TI - Prediction-correction Legendre spectral scheme for incompressible fluid flow
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 1
SP - 113
EP - 120
LA - eng
KW - initial-boundary value problem; second-order accuracy in time; higher order accuracy in space
UR - http://eudml.org/doc/193905
ER -

References

top
  1. [1] J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969). Zbl0189.40603MR259693
  2. [2] R. Temam, Navier-Stokes Equations. North-Holland, Amsterdam (1977). Zbl0383.35057MR769654
  3. [3] P.J. Roach, Computational Fluid Dynamics, 2nd edition. Hermosa Publishers, Albuquerque (1976). MR411358
  4. [4] Guo Ben-yu, Finite Difference Methods for Partial Differential Equations. Science Press, Beijing (1988). 
  5. [5] J.T. Oden, R.H. Zienkiewicz, R.H. Gallagher and C. Talor, Finite Element Methods in Flow Problems. John Willey, New York (1974). 
  6. [6] V. Girault and P. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Lecture Note in Math. 794. Springer-Verlag, Berlin (1979). Zbl0413.65081MR548867
  7. [7] D. Gottlieb and S.A. Orszag, Numerical Analysis of Spectral Methods, CBMS-NSF Reginal Conference Series in Applied Mathematics 26. SIAM, Philadelphia (1977). Zbl0412.65058MR520152
  8. [8] C. Canuto, M.Y. Hussaini, A Quarteroni and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin (1988). Zbl0658.76001MR917480
  9. [9] A.J. Chorin, Numerical methods of thermal convection. J. Comp. Phys 2 (1976) 12-26. 
  10. [10] J.L. Lions, On the numerical approximation of some equations arising in hydrodynamics. In Numerical Solution of Fluid Problems in Continuum Physics, SIAM-AMS Proceedings II, G. Birkhoff and R.S. Varga, Eds. AMS, Providence (1970) 11-23. Zbl0241.65080MR261180
  11. [11] Kuo Ben-yu, Numerical methods for incompressible viscous flow. Scientia Sinica 20 (1977) 287-304. Zbl0367.76044MR502906
  12. [12] Jie Shen, On pressure stabilization method and projection method for unsteady Navier-Stokes equations. In Advance in Computer Methods for Partial Differential Equations VII, R. Vichnevetsky, D. Knight and G. Richter, Eds. IMACS, New Brunswick (1992) 658-602. 
  13. [13] P.M. Gresho and R.L. Sani, On pressure boundary conditions for incompressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids 7 (1987) 1111-1145. Zbl0644.76025
  14. [14] C. Bernardi, G. Coppoletta and Y. Maday, Some spectral approximations of two-dimemsional fourth-order problems. Math. Comp. 59 (1992) 63-76. Zbl0754.65088MR1134714
  15. [15] Jie Shen, Efficient Spectral-Galerkin method I, Direct solvers of second and fourth order equations using Legendre polynomials. SIAM Sci. Comput. 15 (1994) 1489-1505. Zbl0811.65097MR1298626
  16. [16] Guo Ben-yu, He Li-ping and Mao De-kang, On two-dimensional Navier-Stokes equation in stream fonction form. J. Math. Anal. Appl. 205 (1997) 1. MR1426977
  17. [17] Guo Ben-yu and He Li-ping, The fully discrete Legendre spectral approximation of two-dimensional unsteady incompressible fluid flow in stream function form. SIAM J. Numer. Anal. 35 (1998) 146. Zbl0909.76067MR1618444
  18. [18] R.A. Adams, Sobolev Space. Academic Press, New York (1975). Zbl0314.46030MR450957
  19. [19] J.L. Lions and E. Magenes, Problèmes aux Limites Non homogènes et applications, Vol. 1. Dunod, Paris (1968). Zbl0165.10801MR247243
  20. [20] C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev space. Math. Comp. 38 (1982) 67-68. Zbl0567.41008MR637287
  21. [21] He Li-ping, Mao De-Kang and Guo Ben-yu, A prediction-correction Legendre spectral scheme for two-dimensional unsteady incompressible fluid flow in stream function form, RR 1996-3, Department of Mathematics, Shanghai University. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.