Interpolants d’Hermite obtenus par subdivision
- Volume: 33, Issue: 1, page 55-65
- ISSN: 0764-583X
Access Full Article
topHow to cite
topMerrien, Jean-Louis. "Interpolants d’Hermite $C^2$ obtenus par subdivision." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.1 (1999): 55-65. <http://eudml.org/doc/193914>.
@article{Merrien1999,
author = {Merrien, Jean-Louis},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Hermite interpolation; piecewise polynomial interpolation; algorithm; convergence; numerical examples; surface interpolation},
language = {fre},
number = {1},
pages = {55-65},
publisher = {Dunod},
title = {Interpolants d’Hermite $C^2$ obtenus par subdivision},
url = {http://eudml.org/doc/193914},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Merrien, Jean-Louis
TI - Interpolants d’Hermite $C^2$ obtenus par subdivision
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 1
SP - 55
EP - 65
LA - fre
KW - Hermite interpolation; piecewise polynomial interpolation; algorithm; convergence; numerical examples; surface interpolation
UR - http://eudml.org/doc/193914
ER -
References
top- [1] M.A. Berger and Y. Wang, Bounded Semigroups of Matrices Linear Alg. Appl. 166 (1992) 21-27. Zbl0818.15006MR1152485
- [2] W. Boehm, G. Farin and J. Kahmann, A survey of curve and surface methods in CAGD. Computer Aided Geometric Design 1 (1984) 1-60. Zbl0604.65005
- [3] I. Daubechies and J. C. Lagarias, Set of Matrices All Infinite Products of Which Converge. Linear Alg. Appl. 161 (1992) 227-263. Zbl0746.15015MR1142737
- [4] G. Deslauriers and S. Dubuc, Interpolation dyadique In Fractals Dimensions non entieres et applications Éditions Masson, Paris (1987) 44-55. Zbl0645.42010
- [5] S. Dubuc, Interpolation through an Iterative Scheme Math. Anal. Appl. 114 (1986) 185-204. Zbl0615.65005MR829123
- [6] N. Dyn, D. Levin and J. A. Gregory, A 4-point interpolatory subdivision scheme for curve design. Computer Aided Geometric Design 4 (1987) 257-268. Zbl0638.65009MR937365
- [7] N. Dyn, D. Levin, Analysis of Hermite-type subdivision schemes. Approximation Theory VIII.: Wavelets and Multilevel Approximation C. K. Chui and L. L. Schumaker Eds. World Scientific, Singapore (1995) 117-124. Zbl0927.65034MR1471778
- [8] G. Faber, Uber stetige Functionen Math. Ann. 66 (1909) 81-94. Zbl39.0455.02JFM39.0455.02
- [9] J.-L. Merrien, A family of Hermite interpolants by bisection algorithm. Numerical Algorithms 2 (1992) 187-200. Zbl0754.65011MR1165905
- [10] C. A. Micchelli, Mathematical Aspects of Geometric Modeling. SIAM, Philadelphia (1995). Zbl0864.65008MR1308048
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.