Interpolants d’Hermite C 2 obtenus par subdivision

Jean-Louis Merrien

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 1, page 55-65
  • ISSN: 0764-583X

How to cite

top

Merrien, Jean-Louis. "Interpolants d’Hermite $C^2$ obtenus par subdivision." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.1 (1999): 55-65. <http://eudml.org/doc/193914>.

@article{Merrien1999,
author = {Merrien, Jean-Louis},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Hermite interpolation; piecewise polynomial interpolation; algorithm; convergence; numerical examples; surface interpolation},
language = {fre},
number = {1},
pages = {55-65},
publisher = {Dunod},
title = {Interpolants d’Hermite $C^2$ obtenus par subdivision},
url = {http://eudml.org/doc/193914},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Merrien, Jean-Louis
TI - Interpolants d’Hermite $C^2$ obtenus par subdivision
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 1
SP - 55
EP - 65
LA - fre
KW - Hermite interpolation; piecewise polynomial interpolation; algorithm; convergence; numerical examples; surface interpolation
UR - http://eudml.org/doc/193914
ER -

References

top
  1. [1] M.A. Berger and Y. Wang, Bounded Semigroups of Matrices Linear Alg. Appl. 166 (1992) 21-27. Zbl0818.15006MR1152485
  2. [2] W. Boehm, G. Farin and J. Kahmann, A survey of curve and surface methods in CAGD. Computer Aided Geometric Design 1 (1984) 1-60. Zbl0604.65005
  3. [3] I. Daubechies and J. C. Lagarias, Set of Matrices All Infinite Products of Which Converge. Linear Alg. Appl. 161 (1992) 227-263. Zbl0746.15015MR1142737
  4. [4] G. Deslauriers and S. Dubuc, Interpolation dyadique In Fractals Dimensions non entieres et applications Éditions Masson, Paris (1987) 44-55. Zbl0645.42010
  5. [5] S. Dubuc, Interpolation through an Iterative Scheme Math. Anal. Appl. 114 (1986) 185-204. Zbl0615.65005MR829123
  6. [6] N. Dyn, D. Levin and J. A. Gregory, A 4-point interpolatory subdivision scheme for curve design. Computer Aided Geometric Design 4 (1987) 257-268. Zbl0638.65009MR937365
  7. [7] N. Dyn, D. Levin, Analysis of Hermite-type subdivision schemes. Approximation Theory VIII.: Wavelets and Multilevel Approximation C. K. Chui and L. L. Schumaker Eds. World Scientific, Singapore (1995) 117-124. Zbl0927.65034MR1471778
  8. [8] G. Faber, Uber stetige Functionen Math. Ann. 66 (1909) 81-94. Zbl39.0455.02JFM39.0455.02
  9. [9] J.-L. Merrien, A family of Hermite interpolants by bisection algorithm. Numerical Algorithms 2 (1992) 187-200. Zbl0754.65011MR1165905
  10. [10] C. A. Micchelli, Mathematical Aspects of Geometric Modeling. SIAM, Philadelphia (1995). Zbl0864.65008MR1308048

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.