On the stability of solutions of impulsive nonlinear parabolic equations

Drumi Bainov; Emil Minchev

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 2, page 351-357
  • ISSN: 0764-583X

How to cite

top

Bainov, Drumi, and Minchev, Emil. "On the stability of solutions of impulsive nonlinear parabolic equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.2 (1999): 351-357. <http://eudml.org/doc/193924>.

@article{Bainov1999,
author = {Bainov, Drumi, Minchev, Emil},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {method of differential inequalities},
language = {eng},
number = {2},
pages = {351-357},
publisher = {Dunod},
title = {On the stability of solutions of impulsive nonlinear parabolic equations},
url = {http://eudml.org/doc/193924},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Bainov, Drumi
AU - Minchev, Emil
TI - On the stability of solutions of impulsive nonlinear parabolic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 2
SP - 351
EP - 357
LA - eng
KW - method of differential inequalities
UR - http://eudml.org/doc/193924
ER -

References

top
  1. [1] D. Bainov and V. Covachev, Impulsive Differential Equations with a Small Parameter. World Scientific Publishers, Singapore (1994). Zbl0828.34001MR1430569
  2. [2] D. Bainov, Z. Kamont and E. Minchev, Approximate Solutions of Impulsive Hyperbolic Equations. Academic Publishers, Calcutta (1966). Zbl0964.35001
  3. [3] D. Bainov and S. Kostadinov, Abstract Impulsive Differential Equations. Descartes Press, Koriyama (1996). Zbl0843.34051MR1411442
  4. [4] D. Bainov and E. Minchev, Impulsive partial differential equations of first order - (I) Theorems on impulsive differential inequalities. J. Henan Univ. (Nat. Sci.) 25 (1995) 9-18. 
  5. [5] D. Bainov and E. Minchev, Impulsive partial differential equations of first order - (II) Stability of solutions and difference methods. J. Henan Univ. (Nat. Sci.) 26 (1996) 1-13. Zbl0503.34043
  6. [6] D. Bainov and E. Minchev, Trends in the theory of impulsive partial differential equations. Nonlinear World 3 (1996) 357-384. Zbl0906.35109MR1411360
  7. [7] D. Bainov and P. Simeonov, Systems with Impulse Effect, Stability, Theory and Applications. Ellis Horwood, Chichester (1989). Zbl0683.34032MR1010418
  8. [8] D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations : Asymptotic Properties of the Solutions. World Scientific Publishers, Singapore (1995). Zbl0719.34002
  9. [9] D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations : Periodic Solutions and Applications. Longman, Harlow (1993). Zbl0815.34001
  10. [10] L. H. Erbe, H. I. Freedman, X. Z. Liu and J. H. Wu, Comparison principles for impulsive parabolic equations with applications to models of single species growth. J. Austral. Math. Soc, Ser. B 32 (1991) 382-400. Zbl0881.35006MR1097111
  11. [11] V. Lakshmikantham, D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations. World Scientific Publishers, Singapore (1989). Zbl0719.34002MR1082551
  12. [12] E. Minchev and I. E. Okoroafor, Present state of the qualitative theory of the impulsive partial differential equations. Appl. Anal. 1 (1997) 351-369. Zbl0894.35118MR1447824
  13. [13] G. Petrov, Impulsive moving mirror model and impulsive differential equations in Banach space. Communications of the Joint Institute for Nuclear Research, preprint E2-92-276, Dubna, Russia (1992). MR1186399
  14. [14] G. Petrov, Impulsive moving mirror model in a Schrodinger picture with impulse effect in a Banach space. Communications of the Joint Institute for Nuclear Research, preprint E2-92-272, Dubna, Russia (1992). MR1186407

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.