A strongly nonlinear problem arising in glaciology

Jacques Colinge; Jacques Rappaz

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 2, page 395-406
  • ISSN: 0764-583X

How to cite

top

Colinge, Jacques, and Rappaz, Jacques. "A strongly nonlinear problem arising in glaciology." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.2 (1999): 395-406. <http://eudml.org/doc/193926>.

@article{Colinge1999,
author = {Colinge, Jacques, Rappaz, Jacques},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonlinear; glaciology; finite element method; convergence},
language = {eng},
number = {2},
pages = {395-406},
publisher = {Dunod},
title = {A strongly nonlinear problem arising in glaciology},
url = {http://eudml.org/doc/193926},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Colinge, Jacques
AU - Rappaz, Jacques
TI - A strongly nonlinear problem arising in glaciology
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 2
SP - 395
EP - 406
LA - eng
KW - nonlinear; glaciology; finite element method; convergence
UR - http://eudml.org/doc/193926
ER -

References

top
  1. [1] H. Blatter, Velocity and stress fields in grounded glacier : a simple algorithm for including deviatoric stress gradients. J. Glaciol. 41 (1995) 333-344. 
  2. [2] H. Blatter, G. K. C. Clarke and J. Colinge, Stress and velocity fields in glaciers : Part II. Sliding and basal stress distribution. J. Glaciol. (to appear). 
  3. [3] P. G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). Zbl0383.65058
  4. [4] J. Colinge and H. Blatter, Stress and velocity fields in glaciers : Part I. Finite difference schemes for higher order glacier models. J. Glaciol. (to appear). 
  5. [5] J. Colinge, Ice mass modelling with shooting techniques (in préparation). 
  6. [6] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer, Berlin (1989). Zbl0703.49001
  7. [7] P. Marcellini, Approximation of quasiconvex functions, and lower semi-continuity of multiple integrals. Manuscripta Math. 51 (1985) 1-28. Zbl0573.49010
  8. [8] J. Nečas, Les Méthodes Directes en Théorie des Équations Élliptiques. Masson, Paris (1967). 
  9. [9] W. S. B. Paterson, The Physics of Glaciers, 3rd ed. Pergamon/Elsevier, New-York (1994). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.