A stability analysis for finite volume schemes applied to the Maxwell system

Sophie Depeyre

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 3, page 443-458
  • ISSN: 0764-583X

How to cite

top

Depeyre, Sophie. "A stability analysis for finite volume schemes applied to the Maxwell system." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.3 (1999): 443-458. <http://eudml.org/doc/193929>.

@article{Depeyre1999,
author = {Depeyre, Sophie},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {stability; finite volume schemes; Maxwell system; first-order upwind scheme; Yee scheme; convection equation},
language = {eng},
number = {3},
pages = {443-458},
publisher = {Dunod},
title = {A stability analysis for finite volume schemes applied to the Maxwell system},
url = {http://eudml.org/doc/193929},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Depeyre, Sophie
TI - A stability analysis for finite volume schemes applied to the Maxwell system
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 3
SP - 443
EP - 458
LA - eng
KW - stability; finite volume schemes; Maxwell system; first-order upwind scheme; Yee scheme; convection equation
UR - http://eudml.org/doc/193929
ER -

References

top
  1. [l] D.A. Anderson, J.C. Tannehill and R.H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Vol. 1. Hemisphere Publishing Corporation (1984). Zbl0569.76001MR761171
  2. [2] J.P. Cioni, Résolution numérique des équations de Maxwell instationnaires par une méthode de volumes finis. Ph. D. thesis, University of Nice - Sophia Antipolis, France (1995). 
  3. [3] S. Depeyre and D. Issautier, A new constrained formulation of the Maxwell System. RAIRO Modél. Math. Anal. Numér. 31 (1997) 327-357. Zbl0874.65097MR1451346
  4. [4] J.A. Désidéri, A. Goudjo and V. Selmin, Third-order numerical schemes for hyperbolic problems. INRIA Report No. 607 (1987). 
  5. [5] L. Fezoui, Résolution des équations d'Euler par un schéma de Van Leer en éléments finis, INRIA Report No. 358 (1985). 
  6. [6] N. Glinsky, Simulation numérique d'écoulements hypersoniques réactifs hors-équilibre chimique Ph. D. thesis, University of Nice - Sophia Antipolis, France (1990). Zbl0923.76078
  7. [7] P.D. Lax, A. Harten and B. Van Leer, On upstream differencing and Godunov type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35-61. Zbl0565.65051MR693713
  8. [8] B. Van Leer, Flux vector splitting for the Euler equations. Lect. Notes Phys. 170 (1982) 405-512. 
  9. [9] A. Taflove and M.E. Brodwin, Numerical Solution of Steady-State Electromagnetism Scattering Problems Using the Time-Dependent Maxwell's Equations. IEEE Trans. Microwave Theory Tech. 23 (1975) 623-630. 
  10. [10] K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propag. 14 (1993) 302-307. Zbl1155.78304

NotesEmbed ?

top

You must be logged in to post comments.