A stability analysis for finite volume schemes applied to the Maxwell system

Sophie Depeyre

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 3, page 443-458
  • ISSN: 0764-583X

How to cite

top

Depeyre, Sophie. "A stability analysis for finite volume schemes applied to the Maxwell system." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.3 (1999): 443-458. <http://eudml.org/doc/193929>.

@article{Depeyre1999,
author = {Depeyre, Sophie},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {stability; finite volume schemes; Maxwell system; first-order upwind scheme; Yee scheme; convection equation},
language = {eng},
number = {3},
pages = {443-458},
publisher = {Dunod},
title = {A stability analysis for finite volume schemes applied to the Maxwell system},
url = {http://eudml.org/doc/193929},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Depeyre, Sophie
TI - A stability analysis for finite volume schemes applied to the Maxwell system
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 3
SP - 443
EP - 458
LA - eng
KW - stability; finite volume schemes; Maxwell system; first-order upwind scheme; Yee scheme; convection equation
UR - http://eudml.org/doc/193929
ER -

References

top
  1. [l] D.A. Anderson, J.C. Tannehill and R.H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Vol. 1. Hemisphere Publishing Corporation (1984). Zbl0569.76001MR761171
  2. [2] J.P. Cioni, Résolution numérique des équations de Maxwell instationnaires par une méthode de volumes finis. Ph. D. thesis, University of Nice - Sophia Antipolis, France (1995). 
  3. [3] S. Depeyre and D. Issautier, A new constrained formulation of the Maxwell System. RAIRO Modél. Math. Anal. Numér. 31 (1997) 327-357. Zbl0874.65097MR1451346
  4. [4] J.A. Désidéri, A. Goudjo and V. Selmin, Third-order numerical schemes for hyperbolic problems. INRIA Report No. 607 (1987). 
  5. [5] L. Fezoui, Résolution des équations d'Euler par un schéma de Van Leer en éléments finis, INRIA Report No. 358 (1985). 
  6. [6] N. Glinsky, Simulation numérique d'écoulements hypersoniques réactifs hors-équilibre chimique Ph. D. thesis, University of Nice - Sophia Antipolis, France (1990). Zbl0923.76078
  7. [7] P.D. Lax, A. Harten and B. Van Leer, On upstream differencing and Godunov type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35-61. Zbl0565.65051MR693713
  8. [8] B. Van Leer, Flux vector splitting for the Euler equations. Lect. Notes Phys. 170 (1982) 405-512. 
  9. [9] A. Taflove and M.E. Brodwin, Numerical Solution of Steady-State Electromagnetism Scattering Problems Using the Time-Dependent Maxwell's Equations. IEEE Trans. Microwave Theory Tech. 23 (1975) 623-630. 
  10. [10] K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propag. 14 (1993) 302-307. Zbl1155.78304

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.