Non-trapping sets and Huygens principle

Dario Benedetto; Emanuele Caglioti; Roberto Libero

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 3, page 517-530
  • ISSN: 0764-583X

How to cite

top

Benedetto, Dario, Caglioti, Emanuele, and Libero, Roberto. "Non-trapping sets and Huygens principle." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.3 (1999): 517-530. <http://eudml.org/doc/193933>.

@article{Benedetto1999,
author = {Benedetto, Dario, Caglioti, Emanuele, Libero, Roberto},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {eikonal equation; distance function; solid fuel combustion},
language = {eng},
number = {3},
pages = {517-530},
publisher = {Dunod},
title = {Non-trapping sets and Huygens principle},
url = {http://eudml.org/doc/193933},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Benedetto, Dario
AU - Caglioti, Emanuele
AU - Libero, Roberto
TI - Non-trapping sets and Huygens principle
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 3
SP - 517
EP - 530
LA - eng
KW - eikonal equation; distance function; solid fuel combustion
UR - http://eudml.org/doc/193933
ER -

References

top
  1. [1] H. Busemann, Convex Surfaces, in Interscience Tracts in Pure and Applied Mathematics, No. 6, Interscience Publishers INC.,New York (1958). Zbl0196.55101MR105155
  2. [2] B. Chow, L. P. Liou and D. H. Tsai, Expansion of embedded curves with turning angle greater than -π. Invent. Math. 123 (1996) 415-429. Zbl0858.53001MR1383955
  3. [3] M. C. Delfour and J. P. Zolésio, Shape Analysis via Oriented Distance Functions J Funct. Anal. 123 (1994) 129-201. Zbl0814.49032MR1279299
  4. [4] L. C. Evans and R. F. Gariepy, Measure Theory and fine properties of functions. CRC Press (1992). Zbl0804.28001MR1158660
  5. [5] E. Giusti, Minimal surfaces and functions of bounded variation, in Notes on Pure Mathematics, Birkhäuser, Boston (1984). Zbl0545.49018MR775682
  6. [6] E. Makai, Steiner type inequalities in plane geometry. Period. Polytech. Elec. Engrg. 3 (1959) 345-355. MR110050
  7. [7] M. H. A. Newman, Elements of the Topology of the Plane Sets of Points. Cambridge University Press (1951). Zbl0045.44003MR44820
  8. [8] L. A. Santaló, Integral Geometry and Geometric Probability, in Encyclopedia of Mathematics and its applications, Addison-Wesley Pub (1976). Zbl0342.53049MR433364

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.