Non-trapping sets and Huygens principle
Dario Benedetto; Emanuele Caglioti; Roberto Libero
- Volume: 33, Issue: 3, page 517-530
- ISSN: 0764-583X
Access Full Article
topHow to cite
topReferences
top- [1] H. Busemann, Convex Surfaces, in Interscience Tracts in Pure and Applied Mathematics, No. 6, Interscience Publishers INC.,New York (1958). Zbl0196.55101MR105155
- [2] B. Chow, L. P. Liou and D. H. Tsai, Expansion of embedded curves with turning angle greater than -π. Invent. Math. 123 (1996) 415-429. Zbl0858.53001MR1383955
- [3] M. C. Delfour and J. P. Zolésio, Shape Analysis via Oriented Distance Functions J Funct. Anal. 123 (1994) 129-201. Zbl0814.49032MR1279299
- [4] L. C. Evans and R. F. Gariepy, Measure Theory and fine properties of functions. CRC Press (1992). Zbl0804.28001MR1158660
- [5] E. Giusti, Minimal surfaces and functions of bounded variation, in Notes on Pure Mathematics, Birkhäuser, Boston (1984). Zbl0545.49018MR775682
- [6] E. Makai, Steiner type inequalities in plane geometry. Period. Polytech. Elec. Engrg. 3 (1959) 345-355. MR110050
- [7] M. H. A. Newman, Elements of the Topology of the Plane Sets of Points. Cambridge University Press (1951). Zbl0045.44003MR44820
- [8] L. A. Santaló, Integral Geometry and Geometric Probability, in Encyclopedia of Mathematics and its applications, Addison-Wesley Pub (1976). Zbl0342.53049MR433364