Non-trapping sets and Huygens principle

Dario Benedetto; Emanuele Caglioti; Roberto Libero

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 3, page 517-530
  • ISSN: 0764-583X

How to cite

top

Benedetto, Dario, Caglioti, Emanuele, and Libero, Roberto. "Non-trapping sets and Huygens principle." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.3 (1999): 517-530. <http://eudml.org/doc/193933>.

@article{Benedetto1999,
author = {Benedetto, Dario, Caglioti, Emanuele, Libero, Roberto},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {eikonal equation; distance function; solid fuel combustion},
language = {eng},
number = {3},
pages = {517-530},
publisher = {Dunod},
title = {Non-trapping sets and Huygens principle},
url = {http://eudml.org/doc/193933},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Benedetto, Dario
AU - Caglioti, Emanuele
AU - Libero, Roberto
TI - Non-trapping sets and Huygens principle
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 3
SP - 517
EP - 530
LA - eng
KW - eikonal equation; distance function; solid fuel combustion
UR - http://eudml.org/doc/193933
ER -

References

top
  1. [1] H. Busemann, Convex Surfaces, in Interscience Tracts in Pure and Applied Mathematics, No. 6, Interscience Publishers INC.,New York (1958). Zbl0196.55101MR105155
  2. [2] B. Chow, L. P. Liou and D. H. Tsai, Expansion of embedded curves with turning angle greater than -π. Invent. Math. 123 (1996) 415-429. Zbl0858.53001MR1383955
  3. [3] M. C. Delfour and J. P. Zolésio, Shape Analysis via Oriented Distance Functions J Funct. Anal. 123 (1994) 129-201. Zbl0814.49032MR1279299
  4. [4] L. C. Evans and R. F. Gariepy, Measure Theory and fine properties of functions. CRC Press (1992). Zbl0804.28001MR1158660
  5. [5] E. Giusti, Minimal surfaces and functions of bounded variation, in Notes on Pure Mathematics, Birkhäuser, Boston (1984). Zbl0545.49018MR775682
  6. [6] E. Makai, Steiner type inequalities in plane geometry. Period. Polytech. Elec. Engrg. 3 (1959) 345-355. MR110050
  7. [7] M. H. A. Newman, Elements of the Topology of the Plane Sets of Points. Cambridge University Press (1951). Zbl0045.44003MR44820
  8. [8] L. A. Santaló, Integral Geometry and Geometric Probability, in Encyclopedia of Mathematics and its applications, Addison-Wesley Pub (1976). Zbl0342.53049MR433364

NotesEmbed ?

top

You must be logged in to post comments.