Mathematical and numerical studies of non linear ferromagnetic materials
- Volume: 33, Issue: 3, page 593-626
- ISSN: 0764-583X
Access Full Article
topHow to cite
topJoly, Patrick, and Vacus, Olivier. "Mathematical and numerical studies of non linear ferromagnetic materials." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.3 (1999): 593-626. <http://eudml.org/doc/193937>.
@article{Joly1999,
author = {Joly, Patrick, Vacus, Olivier},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonlinear ferromagnetic materials; Maxwell equation; Hille-Yosida theorem; FDTD; Landau-Lifshitz-Gilbert equation},
language = {eng},
number = {3},
pages = {593-626},
publisher = {Dunod},
title = {Mathematical and numerical studies of non linear ferromagnetic materials},
url = {http://eudml.org/doc/193937},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Joly, Patrick
AU - Vacus, Olivier
TI - Mathematical and numerical studies of non linear ferromagnetic materials
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 3
SP - 593
EP - 626
LA - eng
KW - nonlinear ferromagnetic materials; Maxwell equation; Hille-Yosida theorem; FDTD; Landau-Lifshitz-Gilbert equation
UR - http://eudml.org/doc/193937
ER -
References
top- [1] A. Bagneres, Simulation de la structure de parois dans un matériau magnétique. Ph.D. thesis, Institut National Polytechnique de Grenoble (1988).
- [2] W. B. Brown, Micromagnetics. Interscience Publisher (1963).
- [3] B. Lax and K. J. Button, Microwave ferrites and ferromagnetics. McGraw-Hill book company (1962).
- [4] G. Pircher, Ferrites et grenats, phénomènes non linéaires. Dunod (1970).
- [5] A. Visintin, On Landau-Lifchitz' equations for ferromagnetism. Jap. J. Appl. Math. 2 (1985) 69-84. Zbl0613.35018MR839320
- [6] A. Haraux, Nonlinear evolution equations - global behavior of solutions. Springer-Verlag (1981). Zbl0461.35002MR610796
- [7] A. Pazy, Semigroups of linear operators and applications to partial differential equations. New York-Berlin-Tokyo, Springer (1983). Zbl0516.47023MR710486
- [8] P. Monk and A. Parrot, A dispersion analysis of finite element methods for Maxwell's equations. SIAM J. Sci. Comp. 15 (1994) 916-937. Zbl0804.65122MR1278007
- [9] K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations. IEEE Trans. Antennas Propag. 14 (1966) 302-307. Zbl1155.78304
- [10] J. Pereda, L. Vielva, M. Solano, A. Vegas and A. Prieto, FDTD analysis of magnetized ferrites : application to the calculation of dispersion characteristics of ferrite-loaded waveguides. IEEE Trans. Microwave Theory Tech. 43 (1995) 350-356.
- [11] J. Pereda, L. Vielva, A. Vegas and A. Prieto, A treatment of magnetized ferrites using the FDTD method. Microwave and guided wave letters 3 (1993) 136-138.
- [12] J. F. Lee and R. Mittra, Analysis of microwave ferrite devices by using the finite element method. J. Appl. Phys. 69 (1991) 5032-5034.
- [13] A. Reinex, T. Monediere and F. Jecko, Ferrite analysis using the finite-difference time-domain method. Microwave and optical technology letters 5 (1992) 685-686.
- [14] T. Monediere, M. Latrach and F. Jecko, Resonant modes and magnetic losses in a ferrite coaxial resonator. Journal of electromagnetic waves and applications 6 (1992) 199-217.
- [15] G. Zheng and K. Chen, Nonlinear study of microstrip lines containing ferrite dielectric layers. Int. J. Infrared Milim. Waves 13 (1992) 1115-1125.
- [16] P. Joly and O. Vacus, Numerical simulation of electromagnetic wave propagation in 2D non-linear ferromagnetic materials (in preparation). Zbl0871.65105
- [17] P. Joly and O. Vacus, Propagation d'ondes en milieu ferromagnétique 1D : existence et unicité de solutions faibles. C. R. Acad. Sci. (submitted). Zbl0874.35121
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.