A numerical method for solving inverse eigenvalue problems

Hua Dai

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 5, page 1003-1017
  • ISSN: 0764-583X

How to cite

top

Dai, Hua. "A numerical method for solving inverse eigenvalue problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.5 (1999): 1003-1017. <http://eudml.org/doc/193951>.

@article{Dai1999,
author = {Dai, Hua},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {QR-factorization; convergence; symmetric matrix inverse eigenvalue problems; algorithm; multiple eigenvalue; numerical experiments},
language = {eng},
number = {5},
pages = {1003-1017},
publisher = {Dunod},
title = {A numerical method for solving inverse eigenvalue problems},
url = {http://eudml.org/doc/193951},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Dai, Hua
TI - A numerical method for solving inverse eigenvalue problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 5
SP - 1003
EP - 1017
LA - eng
KW - QR-factorization; convergence; symmetric matrix inverse eigenvalue problems; algorithm; multiple eigenvalue; numerical experiments
UR - http://eudml.org/doc/193951
ER -

References

top
  1. [1] G. Alefeld, A. Gienger and G. Mayer, Numerical validation for an inverse matrix eigenvalue problem. Computing 53 (1984) 311-322. Zbl0813.65076MR1308769
  2. [2] F.W. Biegler-König, Sufficient conditions for the solubility of inverse eigenvalue problems. Linear Algebra Appl. 40 (1981) 89-100. Zbl0473.15006MR629609
  3. [3] F.W. Biegler-König, A Newton iteration process for inverse eigenvalue problems. Numer. Math. 37 (1981) 349-354. Zbl0458.65023MR627109
  4. [4] Z. Bohte, Numerical solution of the inverse algebraic eigenvalue problem. Comput. J. 10 (1968) 385-388. Zbl0167.45303MR221744
  5. [5] Z.H. Cao, J.J. Xie and R.C. Li, A sharp version of Kahan's theorem on clustered eigenvalues. Linear Algebra Appl. 245 (1996) 147-156. Zbl0860.15017MR1404174
  6. [6] X. Chen and M.T. Chu, On the least squares solution of inverse eigenvalue problems. SIAM J. Numer. Anal. 33 (1996) 2417-2430. Zbl0864.65021MR1427471
  7. [7] M.T. Chu, Soiving additive inverse eigenvalue problem for symmetrie matrices by the homotopy method. IMA J.Numer. Anal. 9 (1990) 331-342. Zbl0703.65024MR1068196
  8. [8] H. Dai, On the additive inverse eigenvalue problem. Transaction of Nanjing University of Aeronautics and Astronautics 7 (1990) 108-113. Zbl0737.65032
  9. [9] H. Dai, Sufficient condition for the solubility of an algebraic inverse eigenvalue problem (in Chinese). Math. Numer. Sinica 11 (1989) 333-336. Zbl0687.15008MR1037457
  10. [10] H. Dai and P. Lancaster, Numerical methods for finding multiple eigenvalues of matrices depending on parameters. Numer. Math. 76 (1997) 189-208. Zbl0873.65034MR1440120
  11. [11] A.C. Downing and A.S. Householder, Some inverse characteristic value problems. J. Assoc. Comput. Mach. 3 (1956)203-207. MR83817
  12. [12] S. Friedland, Inverse eigenvalue problems. Linear Algebra Appl. 17 (1977) 15-51. Zbl0358.15007MR472861
  13. [13] S. Friedland, J. Nocedal and M.L. Overton, The formulation and analysis of numerical methods for inverse eigenvalue problems. SIAM J. Numer. Anal. 24 (1987) 634-667. Zbl0622.65030MR888754
  14. [14] G.H. Golub and C. F. Van Loan, Matrix Computations, 2nd edn. Johns Hopkins University Press, Baltimore, MD (1989). Zbl0733.65016MR1002570
  15. [15] K.P. Hadeler, Ein inverses Eigenwertproblem. Linear Algebra Appl. 1 (1968) 83-101. Zbl0159.03602MR227189
  16. [16] W.N. Kublanovskaya, On an approach to the solution of the inverse eigenvaiue problem. Zap. Naucn. Sem. Leningrad Otdel. Mat. Inst. Steklov. (1970) 138-149. Zbl0247.65027
  17. [17] F. Laborde, Sur un problème inverse d'un problème de valeurs propres. C.R. Acad. Sci. Paris. Sér. A-B 268 (1969) 153-156. Zbl0174.47001MR241441
  18. [18] P. Lancaster and M. Tismenetsky, The Theory of Matrices with Applications. Academic Press, New York (1985). Zbl0558.15001MR792300
  19. [19] L.L. Li, Some sufficient conditions for the solvability of inverse eigenvalue problems. Linear Algebra Appl. 148 (1991) 225-236. Zbl0725.15006MR1090762
  20. [20] L.L. Li, Sufficient conditions for the solvability of algebraic inverse eigenvalue problems. Linear Algebra Appl. 221(1995) 117-129. Zbl0827.15005MR1331794
  21. [21] R.C. Li, QR decomposition and nonlinear eigenvalue problems (in Chinese). Math. Numer. Sinica 14 (1989) 374-385. Zbl0997.65527
  22. [22] R.C. Li, Compute multiply nonlinear eigenvalues. J. Comput. Math. 10 (1992) 1-20. Zbl0752.65042MR1159618
  23. [23] R.C. Li, Algorithms for inverse eigenvalue problems. J. Comput. Math. 10 (1992) 97-111. Zbl0751.65027MR1159625
  24. [24] P. Morel, Des algorithmes pour le problème inverse des valeur propres. Linear Algebra Appl. 13 (1976) 251-273. Zbl0353.65021MR395187
  25. [25] M. Ortega and W.C. Rheinbold, Iterative Solution of Nonlinear Equations in Several Variables.. Academic Press New York (1970). Zbl0241.65046MR273810
  26. [26] G.W. Stewart and J.-G. Sun, Matrix Perturbation Analysis. Academic Press, New York (1990). MR1061154
  27. [27] J.-G. Sun, On the sufficient conditions for the solubility of algebraic inverse eigenvalue problems (in Chinese). Math. Numer. Sinica 9 (1987) 49-59. Zbl0616.15012MR893378
  28. [28] J.-G. Sun and Q. Ye, The unsolvability of inverse algebraic eigenvalue problems almost everywhere. J. Comput.Math. 4 (1986) 212-226. Zbl0595.15007MR860150
  29. [29] J.-G. Sun, The unsolvability of multiplicative inverse eigenvalues almost everywhere. J. Comput. Math. 4 (1986) 227-244. Zbl0595.15008MR860151
  30. [30] S.F. Xu, On the necessary conditions for the solvability of algebraic inverse eigenvalue problems. J. Comput. Math. 10 (1992) 93-97. Zbl0745.15004
  31. [31] S.F. Xu, On the sufficient conditions for the solvability of algebraic inverse eigenvalue problems. J. Comput. Math. 10 (1992) 171-180. Zbl0745.15005
  32. [32] Q. Ye, A class of iterative algorithms for solving inverse eigenvalue problems (in Chinese). Math. Numer. Sinica 9(1987) 144-153. Zbl0633.65037MR915302
  33. [33] S.Q. Zhou and H. Dai, The Algebraic Inverse eigenvalue Problem (in Chinese). Henan Science and Technology Press, Zhengzhou, China (1991). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.