Local solutions for stochastic Navier Stokes equations

Alain Bensoussan; Jens Frehse

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 2, page 241-273
  • ISSN: 0764-583X

How to cite

top

Bensoussan, Alain, and Frehse, Jens. "Local solutions for stochastic Navier Stokes equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.2 (2000): 241-273. <http://eudml.org/doc/193985>.

@article{Bensoussan2000,
author = {Bensoussan, Alain, Frehse, Jens},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {deterministic Navier-Stokes equations; stochastic Navier Stokes equations; smoothness; random parameter; local solution; stochastic differential equations},
language = {eng},
number = {2},
pages = {241-273},
publisher = {Dunod},
title = {Local solutions for stochastic Navier Stokes equations},
url = {http://eudml.org/doc/193985},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Bensoussan, Alain
AU - Frehse, Jens
TI - Local solutions for stochastic Navier Stokes equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 2
SP - 241
EP - 273
LA - eng
KW - deterministic Navier-Stokes equations; stochastic Navier Stokes equations; smoothness; random parameter; local solution; stochastic differential equations
UR - http://eudml.org/doc/193985
ER -

References

top
  1. [1] A. Bensoussan, Stochastic Navier Stokes Equations. Acta. Appl. Math. 38 (1995) 267-304. Zbl0836.35115MR1326637
  2. [2] A. Bensoussan and R. Temam, Equations stochastiques du type Navier-Stokes. J. Func. Anal. 13 (1973) 195-222. Zbl0265.60094MR348841
  3. [3] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge (1992). Zbl0761.60052MR1207136
  4. [4] F. Flandoli and D. Gatarek, Martingale and Stationary Solutions for Navier-Stokes Equations, Preprints di Matematica - n° 14 (1994). Zbl0831.60072
  5. [5] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holland, Amsterdam (1981). Zbl0495.60005MR1011252
  6. [6] I. Karatzas and S. E. Shereve, Brownian Motion and Stochastic Calculus, Springer-Verlag, New York (1988). Zbl0638.60065MR917065
  7. [7] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris (1969). Zbl0189.40603MR259693
  8. [8] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North Holland (1977). Zbl0383.35057MR609732
  9. [9] W. von Wahl, The Equations of Navier-Stokes and Abstract Parabolic Equations. Aspects of Mathematics, Fr. Viewig & Sohn, Braunschweig/Wiesbaden (1985). MR832442

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.