Structural evolution of the Taylor vortices

Tian Ma; Shouhong Wang

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 2, page 419-437
  • ISSN: 0764-583X

How to cite

top

Ma, Tian, and Wang, Shouhong. "Structural evolution of the Taylor vortices." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.2 (2000): 419-437. <http://eudml.org/doc/193994>.

@article{Ma2000,
author = {Ma, Tian, Wang, Shouhong},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {classification; Taylor vortices; perturbations; Hamiltonian vector fields; divergence-free vector fields; Navier-Stokes equations; two-dimensional torus},
language = {eng},
number = {2},
pages = {419-437},
publisher = {Dunod},
title = {Structural evolution of the Taylor vortices},
url = {http://eudml.org/doc/193994},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Ma, Tian
AU - Wang, Shouhong
TI - Structural evolution of the Taylor vortices
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 2
SP - 419
EP - 437
LA - eng
KW - classification; Taylor vortices; perturbations; Hamiltonian vector fields; divergence-free vector fields; Navier-Stokes equations; two-dimensional torus
UR - http://eudml.org/doc/193994
ER -

References

top
  1. [1] R. Abraham and J. Marsden, Foundations of Mechanics, Addison-Wesley: Reading, MA (1978). Zbl0393.70001MR515141
  2. [2] D. V. Anosov and V. Arnold, Dynamical Systems I, Springer-Verlag, New York, Heidelberg, Berlin (1985). Zbl0658.00008MR970793
  3. [3] V. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, Heidelberg, Berlin (1978). Zbl0386.70001MR690288
  4. [4] Alain Bensoussan, Jacques-Louis Lions and Papanicolaou George, Asymptotic analysis for periodic structures, Ser. Studies in Mathematics and its Applications. 5; North-Holland Publishing Co., Amsterdam (1978) 700. Zbl0404.35001MR503330
  5. [5] D. Chillingworth, Differential topology with a view to applications. Pitman, London, San Francisco, Melbourne. Research Notes in Mathematics, 9 (1976). Zbl0336.58001MR646088
  6. [6] A. Chorin, Vorticity and Turbulence, Springer-Verlag (1994). Zbl0795.76002MR1281384
  7. [7] P. Constantin and C. Foias, The Navier-Stokes Equations, Univ. of Chicago Press, Chicago (1988). Zbl0687.35071MR972259
  8. [8] L. Caffarelli and R. Kohn and L. Nirenberg, On the regularity of the solutions of Navier-Stokes Equations. Comm. Pure Appl. Math. 35 (1982) 771-831. Zbl0509.35067MR673830
  9. [9] Strebel, Kurt, Quadratic differentials, Springer-Verlag, Berlin (1984) 184. Zbl0547.30001MR743423
  10. [10] A. Fathi, F. Laudenbach and V. Poénaru, Travaux de Thurston sur les surfaces. Asterisque 66-67 (1979). Zbl0446.57010MR568308
  11. [11] A. Fannjiang and G. Papanicolaou, Convection enhanced diffusion for periodic flows. SIAM J. Appl. Math. 54 (1994) 333-408. Zbl0796.76084MR1265233
  12. [12] H. Hopf, Abbildungsklassen in-dirnensionaler mannigfaltigkeiten. Math. Annalen 96 (1926) 225-250. Zbl52.0571.01JFM52.0571.01
  13. [13] D. Gottlieb, Vector fields and classical theorems of topology. Rendiconti del Seminario Matematico e Fisico, Milano 60 (1990) 193-203. Zbl0810.57020MR1229491
  14. [14] J. Milnor, Topology from the differentiable viewpoint. University Press of Virginia, based on notes by D.W. Weaver, Charlott-seville (1965). Zbl0136.20402MR226651
  15. [15] J. Guckenheimer and P. J. Holmes, Nonlinear oscillations, dynamical Systems, and bifurcations of vector fields, Springer-Verlag, New York, Heidelberg, Berlin (1983). Zbl0515.34001MR709768
  16. [16] J. K. Haie, Ordinary differential equations, Robert E. Krieger Publishing Company, Malabar, Florida (1969). Zbl0433.34003
  17. [17] M. W. Hirsch, Differential topology, Springer-Verlag, New York, Heidelberg, Berlin (1976). Zbl0356.57001MR448362
  18. [18] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris (1969). Zbl0189.40603MR259693
  19. [19] A. Katok and B. Hasselblatt, Introduction to the Modem Theory of Dynamical Systems, Cambridge University Press (1995). Zbl0878.58020MR1326374
  20. [20] J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que posent l'hydrodynamique. J. Math. Pures et Appl. XII (1933) 1-82. Zbl0006.16702
  21. [21] J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of the atmosphere and applications. Nonlinearity 5 (1992) 237-288. Zbl0746.76019MR1158375
  22. [22] J. L. Lions, R. Temam and S. Wang, On the Equations of Large-Scale Ocean. Nonlinearity 5 (1992) 1007-1053. Zbl0766.35039MR1187737
  23. [23] J. L. Lions, R. Temam and S. Wang, Models of the coupled atmosphere and ocean (CAO I). Computational Mechanics Advance, 1 (1993) 3-54. Zbl0805.76011MR1252502
  24. [24] J. L. Lions, R. Temam and S. Wang, Geostrophic Asymptotics of the Primitive Equations of the Atmosphere. Topological Methods in Nonlinear Analysis 4; note "Special issue dedicated to J. Leray" (1994) 253-287. Zbl0846.35106MR1350974
  25. [25] J. L. Lions, R. Temam and S. Wang, Mathematical study of the coupled models of atmosphere and ocean (CAO III). J. Math. Pures Appl. 73 (1995) 105-163. Zbl0866.76025MR1325825
  26. [26] J. L. Lions, R. Temam and S. Wang, A Simple Global Model for the General Circulation of the Atmosphere, "Dedicated to Peter D. Lax and Louis Nirenberg on the occasion of their 70th birthdays". Comm. Pure. Appl. Math. 50 (1997) 707-752. Zbl0992.86001MR1454171
  27. [27] P. L. Lions, Mathematical Topics in Fluid Mechanics, Oxford science Publications (1996). Zbl0866.76002
  28. [28] A. Majda, Vorticity and the mathematical theory of incompressible fluid flow. Frontiers of the mathematical sciences: 1985 (New York). Comm. Pure Appl. Math. 39 (1986) S187-S220. Zbl0595.76021MR861488
  29. [29] T. Ma and S. Wang, Dynamics of Incompressible Vector Fields. Appl. Math. Lett. 12 (1999) 39-42. Zbl0989.37012MR1750594
  30. [30] T. Ma and S. Wang, Dynamics of 2-D Incompressible Flows. Proceedings of the International Conferences on Differential Equations and Computation (1999). Zbl0957.37046MR1774477
  31. [31] T. Ma and S. Wang, The Geometry of the Stream Lines of Steady States of the Navier-Stokes Equations. Contemporary Mathematics, AMS 238 (1999) 193-202. Zbl0947.35110MR1724664
  32. [32] T. Ma and S. Wang, Block structure and stability of 2-D Incompressible Flows (in preparation, 1999). 
  33. [33] T. Ma and S. Wang, Structural classification and stability of divergence-free vector fields. Nonlinearity (revised, 1999). Zbl1012.57042
  34. [34] A. Majda, The interaction of nonlinear analysis and modern applied mathematics. Proc. Internat. Congress Math., Kyoto, 1990, Springer-Verlag, New York, Heidelberg, Berlin (1991) Vol. 1. Zbl1153.76300MR1127159
  35. [35] N. Markley, The Poincaré-Bendixson theorem for Klein bottle. Trans. AMS 135 (1969). Zbl0175.50101MR234442
  36. [36] L. Markus and R. Meyer, Generic Hamiltoman Systems are neither integrable nor ergodic. Memoirs of the American Mathematical Society 144 (1974). Zbl0291.58009
  37. [37] J. Moser, Stable and Random Motions in Dynamical Systems. Ann. Math. Stud. No. 77 Princeton (1973). Zbl0271.70009MR442980
  38. [38] J. Palis and W. de Melo, Geometric theory of dynamical Systems, Springer-Verlag, New York, Heidelberg, Berlin (1982). Zbl0491.58001MR669541
  39. [39] J. Palis and S. Smale, Structural stability theorem. Global Analysis. Proc. Symp. in Pure Math. XIV (1970). Zbl0214.50702MR267603
  40. [40] M. Peixoto, Structural stability on two dimensional manifolds. Topology 1 (1962) 101-120. Zbl0107.07103MR142859
  41. [41] C. Pugh, The closing lemma. Amer. J. Math. 89 (1967) 956-1009. Zbl0167.21803MR226669
  42. [42] Shub, Michael, Stabilité globale des systèmes dynamiques. Société Mathématique de France. Note With an English preface and summary Astérisque 56 (1978) iv+211. Zbl0396.58014MR513592
  43. [43] C. Robinson, Generic properties of conservative systems, I, II. Amer. J. Math. 92 (1970) 562-603 and 897-906. Zbl0212.56601MR273640
  44. [44] C. Robinson, Structure stability of vector fields. Ann. of Math. 99 (1974) 154-175. Zbl0275.58012MR334283
  45. [45] C. Robinson, Structure stability of C1 diffeomorphisms. J. Differential Equations 22 (1976) 28-73. Zbl0343.58009MR474411
  46. [46] G. Schwartz, Hodge decomposition-A method for solving boundary value problems. Lecture Notes in Mathematics 1607 Springer-Verlag (1995). Zbl0828.58002MR1367287
  47. [47] S. Smale, Differential dynamical systems. Bull. AMS 73 (1967) 747-817. Zbl0202.55202MR228014
  48. [48] F. Takens, Hamiltonian systems: generic properties of closed orbits and local perturbations. Math. Ann. 188 (1970) 304-312. Zbl0191.21602MR284670
  49. [49] G. I. Taylor, Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. Roy. Soc. A 223 (1923) 289-343. Zbl49.0607.01JFM49.0607.01
  50. [50] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, 3rd edition, North Holland, Amsterdam (1984). Zbl0568.35002MR769654
  51. [51] R. Thom, Structural Stability and Morphogenesis, Benjamin-Addison Wesley (1975). Zbl0303.92002MR488156
  52. [52] W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces. Bull. AMS 19 (1988) 417-431. Zbl0674.57008MR956596
  53. [53] V. Trofimov, Introduction to Geometry on Manifolds with Symmetry, MIA Kluwer Academic Publishers (1994). Zbl0804.53002MR1367288
  54. [54] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, Heidelberg, Berlin (1990). Zbl0701.58001MR1056699
  55. [55] J. C. Yoccoz, Recent developments in dynamics, in Proc. Internat. Congress. Math., Zurich (1994), Birkhauser Verlag, Basel, Boston, Berlin (1994) 246-265 Vol. 1. Zbl0844.58001MR1403926

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.