Dynamic programming for the stochastic Navier-Stokes equations
Giuseppe Da Prato; Arnaud Debussche
- Volume: 34, Issue: 2, page 459-475
- ISSN: 0764-583X
Access Full Article
topHow to cite
topDa Prato, Giuseppe, and Debussche, Arnaud. "Dynamic programming for the stochastic Navier-Stokes equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.2 (2000): 459-475. <http://eudml.org/doc/193996>.
@article{DaPrato2000,
author = {Da Prato, Giuseppe, Debussche, Arnaud},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {dynamic programming; optimal cost problem; stochastic Navier-Stokes equation; existence; uniqueness; smooth solution; Hamilton-Jacobi-Bellman equation},
language = {eng},
number = {2},
pages = {459-475},
publisher = {Dunod},
title = {Dynamic programming for the stochastic Navier-Stokes equations},
url = {http://eudml.org/doc/193996},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Da Prato, Giuseppe
AU - Debussche, Arnaud
TI - Dynamic programming for the stochastic Navier-Stokes equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 2
SP - 459
EP - 475
LA - eng
KW - dynamic programming; optimal cost problem; stochastic Navier-Stokes equation; existence; uniqueness; smooth solution; Hamilton-Jacobi-Bellman equation
UR - http://eudml.org/doc/193996
ER -
References
top- [1] F. Abergel and R. Temam, On some control problems in fluid mechanics. Theor. and Comp. Fluid Dynamics 1 (1990) 303-325. Zbl0708.76106
- [2] V. Barbu and S. Sritharan, H∞-control theory of fluids dynamics. Proc. R. Soc. Lond. A 454 (1998) 3009-3033. Zbl0919.93026MR1658234
- [3] T. Bewley, P. Moin and R. Temam, Optimal and robust approaches for linear and nonlinear regulartion problems in fluid mechanics, AIAA 97-1872, 28th AIAA Fluid Dynamics Conference and 4th AIAA Shear Flow Control Conference (1997).
- [4] P. Cannarsa and G. da Prato, Some results on nonlinear optimal control problems and Hamilton-Jacobi equations in infinite dimensions. J. Funct. Anal. 90 (1990) 27-47. Zbl0717.49022MR1047576
- [5] P. Cannarsa and G. da Prato, Direct solution of a second order Hamilton-Jacobi equation in Hilbert spaces, in: Stochastic partial differential equations and applications, G. da Prato and L. Tubaro Eds, Pitman Research. Notes in Mathernatics Series n° 268 (1992) pp. 72-85. Zbl0805.49016MR1222689
- [6] S. Cerrai, Optimal control problem for stochastic reaction-diffusion systems with non Lipschitz coefficients (to appear). Zbl0987.60073MR1825865
- [7] H. Choi, R. Temam, P. Moin and J. Kim, Feedback control for unsteady flow and its application to the stochastic Burgers equation. J. Fluid Mech. 253 (1993) 509-543. Zbl0810.76012MR1233904
- [8] G. da Prato and A. Debussche, Differentiability of the transition semigroup of stochastic Burgers equation. Rend. Acc. Naz. Lincei, s.9, v.9 (1998) 267-277. Zbl0931.37036MR1722786
- [9] G. da Prato and A. Debussche, Dynamic Programming for the stochastic Burgers equations. Annali di Mat. Pura ed. Appl. (to appear). Zbl1016.49024MR1849384
- [10] G. da prato and J. Zabczyk, Differentiability of the Feynman-Kac semigroup and a control application. Rend. Mat. Acc. Lincei s.9, v.8 (1997) 183-188. Zbl0910.93025MR1611613
- [11] H. Fattorini and S. Sritharan, Existence of optimal controls for viscous flow problems. Proc. R. Soc. Lond. A 439 (1992) 81-102. Zbl0786.76063MR1188854
- [12] F. Gozzi, Regularity of solutions of a second order Hamilton-Jacobi equation and application to a control problem. Commun. in partial differential equations 20 (1995) 775-826. Zbl0842.49021MR1326907
- [13] F. Gozzi, Global Regular Solutions of Second Order Hamilton-Jacobi Equations in Hilbert spaces with locally Lipschitz nonlinearities. J. Math. Anal. Appl. 198 (1996) 399-443. Zbl0858.35129MR1376272
- [14] P. L. Lions, Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part I: The case of bounded stochastic evolution. Acta Math 161 (1988) 243-278. Part II : Optimal control of Zakai's equation, in Stochastic partial differential equations and applications, G. da Prato and L. Tubaro Eds, Lecture Notes in Mathematics No. 1390, Springer-Verlag (1990) 147-170. Part III: Uniqueness of viscosity solutions for general second order equations. J. Funct. Anal. 86 (1991) 1-18. Zbl0757.93083MR971797
- [15] S. Sritharan, Dynamic programming of the Navier-Stokes equations. Syst. Cont. Lett. 16 (1991) 299-307. Zbl0737.49021MR1102218
- [16] S. Sritharan, An introduction to determimstic and stochastic control of viscous flow, in Optimal control of viscous flows, p. 1-42, SIAM, Philadelphia, S. Sritharan Ed. MR1632419
- [17] A. Swiech, Viscosity solutions of fully nonlinear partial differential equations with "unbounded" terms in infinite dimensions, Ph D thesis, University of Cahforma at Santa Barbara (1993).
- [18] R. Temam, T. Bewley and P. Moin, Control of turbulent flows, Proc of the 18th IFIP TC7, Conf. on System modelling ond optimization, Detroit, Michigan (1997). Zbl0925.93417
- [19] R. Temam, The Navier-Stokes equation, North-Holland (1977). Zbl0383.35057
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.