Dynamic programming for the stochastic Navier-Stokes equations

Giuseppe Da Prato; Arnaud Debussche

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 2, page 459-475
  • ISSN: 0764-583X

How to cite

top

Da Prato, Giuseppe, and Debussche, Arnaud. "Dynamic programming for the stochastic Navier-Stokes equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.2 (2000): 459-475. <http://eudml.org/doc/193996>.

@article{DaPrato2000,
author = {Da Prato, Giuseppe, Debussche, Arnaud},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {dynamic programming; optimal cost problem; stochastic Navier-Stokes equation; existence; uniqueness; smooth solution; Hamilton-Jacobi-Bellman equation},
language = {eng},
number = {2},
pages = {459-475},
publisher = {Dunod},
title = {Dynamic programming for the stochastic Navier-Stokes equations},
url = {http://eudml.org/doc/193996},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Da Prato, Giuseppe
AU - Debussche, Arnaud
TI - Dynamic programming for the stochastic Navier-Stokes equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 2
SP - 459
EP - 475
LA - eng
KW - dynamic programming; optimal cost problem; stochastic Navier-Stokes equation; existence; uniqueness; smooth solution; Hamilton-Jacobi-Bellman equation
UR - http://eudml.org/doc/193996
ER -

References

top
  1. [1] F. Abergel and R. Temam, On some control problems in fluid mechanics. Theor. and Comp. Fluid Dynamics 1 (1990) 303-325. Zbl0708.76106
  2. [2] V. Barbu and S. Sritharan, H∞-control theory of fluids dynamics. Proc. R. Soc. Lond. A 454 (1998) 3009-3033. Zbl0919.93026MR1658234
  3. [3] T. Bewley, P. Moin and R. Temam, Optimal and robust approaches for linear and nonlinear regulartion problems in fluid mechanics, AIAA 97-1872, 28th AIAA Fluid Dynamics Conference and 4th AIAA Shear Flow Control Conference (1997). 
  4. [4] P. Cannarsa and G. da Prato, Some results on nonlinear optimal control problems and Hamilton-Jacobi equations in infinite dimensions. J. Funct. Anal. 90 (1990) 27-47. Zbl0717.49022MR1047576
  5. [5] P. Cannarsa and G. da Prato, Direct solution of a second order Hamilton-Jacobi equation in Hilbert spaces, in: Stochastic partial differential equations and applications, G. da Prato and L. Tubaro Eds, Pitman Research. Notes in Mathernatics Series n° 268 (1992) pp. 72-85. Zbl0805.49016MR1222689
  6. [6] S. Cerrai, Optimal control problem for stochastic reaction-diffusion systems with non Lipschitz coefficients (to appear). Zbl0987.60073MR1825865
  7. [7] H. Choi, R. Temam, P. Moin and J. Kim, Feedback control for unsteady flow and its application to the stochastic Burgers equation. J. Fluid Mech. 253 (1993) 509-543. Zbl0810.76012MR1233904
  8. [8] G. da Prato and A. Debussche, Differentiability of the transition semigroup of stochastic Burgers equation. Rend. Acc. Naz. Lincei, s.9, v.9 (1998) 267-277. Zbl0931.37036MR1722786
  9. [9] G. da Prato and A. Debussche, Dynamic Programming for the stochastic Burgers equations. Annali di Mat. Pura ed. Appl. (to appear). Zbl1016.49024MR1849384
  10. [10] G. da prato and J. Zabczyk, Differentiability of the Feynman-Kac semigroup and a control application. Rend. Mat. Acc. Lincei s.9, v.8 (1997) 183-188. Zbl0910.93025MR1611613
  11. [11] H. Fattorini and S. Sritharan, Existence of optimal controls for viscous flow problems. Proc. R. Soc. Lond. A 439 (1992) 81-102. Zbl0786.76063MR1188854
  12. [12] F. Gozzi, Regularity of solutions of a second order Hamilton-Jacobi equation and application to a control problem. Commun. in partial differential equations 20 (1995) 775-826. Zbl0842.49021MR1326907
  13. [13] F. Gozzi, Global Regular Solutions of Second Order Hamilton-Jacobi Equations in Hilbert spaces with locally Lipschitz nonlinearities. J. Math. Anal. Appl. 198 (1996) 399-443. Zbl0858.35129MR1376272
  14. [14] P. L. Lions, Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part I: The case of bounded stochastic evolution. Acta Math 161 (1988) 243-278. Part II : Optimal control of Zakai's equation, in Stochastic partial differential equations and applications, G. da Prato and L. Tubaro Eds, Lecture Notes in Mathematics No. 1390, Springer-Verlag (1990) 147-170. Part III: Uniqueness of viscosity solutions for general second order equations. J. Funct. Anal. 86 (1991) 1-18. Zbl0757.93083MR971797
  15. [15] S. Sritharan, Dynamic programming of the Navier-Stokes equations. Syst. Cont. Lett. 16 (1991) 299-307. Zbl0737.49021MR1102218
  16. [16] S. Sritharan, An introduction to determimstic and stochastic control of viscous flow, in Optimal control of viscous flows, p. 1-42, SIAM, Philadelphia, S. Sritharan Ed. MR1632419
  17. [17] A. Swiech, Viscosity solutions of fully nonlinear partial differential equations with "unbounded" terms in infinite dimensions, Ph D thesis, University of Cahforma at Santa Barbara (1993). 
  18. [18] R. Temam, T. Bewley and P. Moin, Control of turbulent flows, Proc of the 18th IFIP TC7, Conf. on System modelling ond optimization, Detroit, Michigan (1997). Zbl0925.93417
  19. [19] R. Temam, The Navier-Stokes equation, North-Holland (1977). Zbl0383.35057

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.