Numerical approximations of the relative rearrangement : the piecewise linear case. Application to some nonlocal problems

Jean-Michel Rakotoson; Maria Luisa Seoane

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 2, page 477-499
  • ISSN: 0764-583X

How to cite

top

Rakotoson, Jean-Michel, and Seoane, Maria Luisa. "Numerical approximations of the relative rearrangement : the piecewise linear case. Application to some nonlocal problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.2 (2000): 477-499. <http://eudml.org/doc/193997>.

@article{Rakotoson2000,
author = {Rakotoson, Jean-Michel, Seoane, Maria Luisa},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite element approximation; nonlocal problems; fixed point method; plasma physics; relative rearrangement of functions},
language = {eng},
number = {2},
pages = {477-499},
publisher = {Dunod},
title = {Numerical approximations of the relative rearrangement : the piecewise linear case. Application to some nonlocal problems},
url = {http://eudml.org/doc/193997},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Rakotoson, Jean-Michel
AU - Seoane, Maria Luisa
TI - Numerical approximations of the relative rearrangement : the piecewise linear case. Application to some nonlocal problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 2
SP - 477
EP - 499
LA - eng
KW - finite element approximation; nonlocal problems; fixed point method; plasma physics; relative rearrangement of functions
UR - http://eudml.org/doc/193997
ER -

References

top
  1. [1] F. Almgren and E. Lieb, Symmetric rearrangement is sometimes continuous. J. Amer. Math. Soc. 2 (1989) 683-772. Zbl0688.46014MR1002633
  2. [2] E. Beretta and M. Vogelius, Symmetrie rearrangement is sometimes continuous, An inverse problem originating from Magnetohydrodynamics II. the case of the Grad-Shafranov equation. Indiana University Mathematics Journal 41 (1992) 1081-1117. Zbl0774.76096MR1206341
  3. [3] H. Berestycki and H. Brezis, On a free boundary problem arising in plasma physics. Nonlinear Anal. 4 (1980) 415-436. Zbl0437.35032MR574364
  4. [4] A. Bermúdez and C. Moreno, Duality methods for solving variational inequalities. Comp. and Math. Appl. 7 (1981) 43-58. Zbl0456.65036MR593554
  5. [5] A. Bermúdez and M. L. Seone, Numerical Solution of a Nonlocal Problem Arising in Plasma Physics. Mathematical and Computing Modelling. 27 (1998) 45-59. Zbl1185.76930MR1616788
  6. [6] J. Blum, Numerical Simulation and Optimal Control in Plasma Physics, Wiley, Gauthier-Villars (1989). Zbl0717.76009MR996236
  7. [7] J. Blum, T. Gallouet and J. Simon, Existence and Control of plasma equilibrium in a tokamak. SIAM J. Math. Anal. 17 (1986) 1158-1177. Zbl0614.35082MR853522
  8. [8] A. H. Boozer, Establishment of magnetic coordinates for given magnetic field. Phys. Fluids 25 (1982) 520-521. Zbl0501.76121
  9. [9] H. Brezis, Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North-Holland (1973). Zbl0252.47055
  10. [10] G. Chiti, Rearrangements of functions and convergence in Orlicz spaces. Applicable Analysis 9 (1979). Zbl0424.46023MR536688
  11. [11] K. M. Chong and N. M. Rice, Equimesurable rearrangements of functions, Queen's University (1971). Zbl0275.46024MR372140
  12. [12] P. G. Ciarlet, Introduction to Numerical Linear Algebra and Optimization, Cambrigde University Press (1989). Zbl0672.65001MR1015713
  13. [13] J. M. Coron, The Continuity of the Rearrangement in W1,p (R). Annali della Scuola Normale Superiore di Pisa. Série IV 11 (1984) 57-85. Zbl0574.46021MR752580
  14. [14] R. Courant and D. Hilbert, Methods of Mathematical Physics, vol I., Interscience Pub. (1953). Zbl0051.28802MR65391
  15. [15] J. I. Díaz, Modelos bidimensionales de equilibrio magnetohidrodinámico para Stellarators Formulación global de las ecuacion es diferenciales no lineales y de las condiciones de contorno, CIEMAT, Informe #1 (1991). 
  16. [16] J. I. Díaz, Modelos bidimensionales de equilibrio magnetohidrodinámico para Stellarators. Resultados de existencia de soluciones, CIEMAT, Informe #2 (1992). MR1194210
  17. [17] J. I. Díaz, Modelos bidimensionales de equilibrio magnetohidrodinámico para Stellarators. Multiplicidad y dependencia de parámetros, CIEMAT, Informe #3 (1993). 
  18. [18] J. I. Díaz and J. M. Rakotoson, On a two-dimensional stationary free boundary problem arising in the confinement of a plasma in a Stellarator. C.R. Acad. Sci. Paris Serie I 317 (1993) 353-358. Zbl0783.76106MR1235448
  19. [19] J. I. Díaz and J. M. Rakotoson, On a nonlocal stationary free boundary problem arising in the confinement of a plasma in a Stellarator geometry. Arch. Rat. Mech. Anal. 134 (1996) 53-95. Zbl0863.76092MR1392309
  20. [20] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland (1976). Zbl0322.90046MR463994
  21. [21] E. Fernández-Cara and C. Moreno, Critical Point Approximation Through Exact Regularization. Math. Comp. 50 (1988) 139-153. Zbl0636.65058MR917822
  22. [22] J. P. Freidberg, Ideal Magnetohydrodynamics. Plenum Press (1987). 
  23. [23] A Friedman, Variational principles and free-boundary problems, John Wiley and Sons (1982). Zbl0564.49002MR679313
  24. [24] R. Glowinski, Numerical methods for non linear variational problems, Springer Verlag (1984). Zbl0536.65054MR737005
  25. [25] H. Grad, Mathematical problem arising in plasmas physics. Proc. Intern. Congr. Math. Nice (1970). 
  26. [26] J. M. Greene and J. L. Johnson, Determination of Hydromagnetic Equilibria. Phys. Fluids 27 (1984) 2101-2120. Zbl0098.44106MR134607
  27. [27] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press (1964). Zbl0047.05302JFM60.0169.01
  28. [28] T. C. Hender and B. A. Carreras, Equilibrium calculation for helical axis Stellarators. Phys. Fluids 27 (1984) 2101-2120. Zbl0559.76119
  29. [29] B. Heron and M. Sermange, Non convex methods for computing free boundary equilibria of axially symmetric plasmas, Rapport de Recherche, I.N.R.I.A. (1981). Zbl0495.65052MR666266
  30. [30] M. D. Kruskal and R. M. Kulsrud, Equilibrium of Magnetically Confined Plasma in a Toriod. Physics of Fluids 1, No. 4, (1958) 265-274. Zbl0098.22707MR112549
  31. [31] A. Marrocco and O. Pironneau, Optimum desing with lagrangian finite elements: desing of an electromagnet, Rapport de Recherche, I.N.R.I.A (1977). 
  32. [32] F. Mignot and J. P. Puel, On a class of nonlinear problems with positive, increasmg, convex nonlinearity. Comm. Par. Diff. Eq. 5 (1980) 791-836. Zbl0456.35034
  33. [33] J. Mossin and J. M. Rakotoson, Isoperimetric inequalities in parabolic equations. Annali della Scuola Normale Superiore di Pisa. Séne IV 13, No. 1, (1986) 51-73. Zbl0652.35053MR863635
  34. [34] J. Mossino and R. Temam, Directional Derivative of the Increasing Rearrangement Mapping and Application to a Queer Differential Equation in Plasma Physics. Duke Mathematical Journal 48 (1981) 475-495. Zbl0476.35031MR630581
  35. [35] J. Mossino and R. Temam, Free boundary problems in plasma physics, review of results and new developments. Free Boundary Problems: theory and applications. Vol I-II. Proc. Montec atini Symposium (1981). A. Fasano and M. Primicerio Eds, Pitman (1983) 672-681. Zbl0512.76126
  36. [36] J. Mossino, Inégalités isopérmétriques et applications en physique, Hermann (1984). Zbl0537.35002MR733257
  37. [37] K. Miyamoto, Plasma Physics for Nuclear Fusion, The M.I.T. Press (1987). 
  38. [38] J. F. Padial, EDPs no lineales originadas en plasmas de fusión y filtración en medios porosos, Thesis Doctoral, Universidad Complutense de Madrid (1995). 
  39. [39] J. F. Padial, J. M. Rakotoson and L. Tello, Introduction to the monotone and relative rearrangements and applications, Rapport, Département de Mathématiques, Université de Poitiers (1993). 
  40. [40] G. Pòlya and W. N. Szegö, Isopermetric inequalities in mathematical physics, Princenton Univ. Press (1951). Zbl0044.38301MR43486
  41. [41] J. P. Puel, A nonlinear eigenvalue problem with free boundary, C.R. Acad. Sci. Paris A 284 (1977) 861-863. Zbl0362.35024
  42. [42] J. M. Rakotoson, Some properties of the relative rearrangement. J. Math. Anal. Appl. 135 (1988) 488-500. Zbl0686.28003MR967224
  43. [43] J. M. Rakotoson, A differentiability result for the relative rearrangement. Diff. Int. Eq. 2 (1989) 363-377. Zbl0772.35018MR983687
  44. [44] J. M. Rakotoson, Relative rearrangement for highly nonlinear equations. Nonlinear Analysis. Theory, Meth. and Appl. 24 (1995) 493-507. Zbl0830.35036MR1315691
  45. [45] J. M. Rakotoson and M. L. Seoane, (in preparation). 
  46. [46] J. M. Rakotoson, Galerkin approximations, strong continuity of the relative rearrangement map and application to plasma physics equations. Diff. Int. Eq. 12 (1999) 67-81. Zbl1005.76097MR1668537
  47. [47] J. M. Rakotoson and B. Simon, Relative rearrangement on a measure space. Application to the regularity of weighted monotone rearrangement. Part I-II. Appl. Math. Lett. 6 (1993) 75-78; 79-92. Zbl0781.49024MR1347759
  48. [48] J. M. Rakotoson and B. Simon, Relative rearrangement on a finite measure space. Application to weighted spaces and to P.D.E. Rev. R. Acad. Cienc. Exactas. Fís. Nat. (Esp ) 91 (1997) 33-45. Zbl0909.35028MR1646540
  49. [49] J. M. Rakotoson and R. Temam, A co-area formula with applications to monotone rearrangement and to regularity. Arch. Rational Mech. Anal. 109 (1991) 213-238. Zbl0735.49039MR1025171
  50. [50] R. T. Rockafellar, Convex Analysis, Princeton Unviversity Press (1970). Zbl0193.18401MR274683
  51. [51] V. D. Shafranov, On agneto-hydrodynamical equilibrium configurations. Soviet Physics JETP, 6 (1958) 5456-554. Zbl0081.21801MR93282
  52. [52] G. G. Talenti, Rearrangements of functions and and Partial Differential Equations. Nonlinear Diffusion Problems, A. Fasano and M. Primicerio Eds, Springer-Verlag (1986) 153-178. Zbl0607.65077MR877989
  53. [53] G. G. Talenti, Rearrangements and PDE. Inequalities, fifty years on from Hardy, Littlewood and Pòlya, W.N. Everitt Ed., Marcel Dekker Inc. (1991) 211-230. Zbl0733.35013MR1112579
  54. [54] G. G. Talenti, Assembling a rearrangement. Arch. Rat. Mech. Anal. 98 (1987) 85-93. Zbl0619.35113MR872748
  55. [55] R. Temam, A nonlinear eigenvalue problem equilibrium shape of a confined plasma. Arch. Rat. Mech. Anal. 65 (1975) 51-73. Zbl0328.35069MR412637
  56. [56] R. Temam, Remarks on a free boundary problem arising in plasma physics. Comm. Par. Diff. Eq. 2 (1977) 563-585. Zbl0355.35023MR602544
  57. [57] R. Temam, Monotone rearrangement of functions and the Grad-Mercier equation of plasma physics, Proc. Int. Conf. Recent Methods in Nonlinear Analysis and Applications, E. de Giogi and U. Mosco Eds (1978). Zbl0405.35066
  58. [58] R. Temam, Analyse Numérique, Presses Universitaires de France (1971). Zbl0187.11801
  59. [59] J. F. Toland, Duality in nonconvex optimization. J. Math. Appl. 66 (1978) 399-415. Zbl0403.90066MR515903
  60. [60] J. F. Toland, A Duality Principle for Non-convex Optimisation and the Calculus the Variations. Arch. Rat. Mech. Anal. 71 (1979) 41-61. Zbl0411.49012MR522706
  61. [61] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall Inc. (1962). Zbl0133.08602MR158502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.