On a model system for the oblique interaction of internal gravity waves
Jean-Claude Saut; Nikolay Tzvetkov
- Volume: 34, Issue: 2, page 501-523
- ISSN: 0764-583X
Access Full Article
topHow to cite
topSaut, Jean-Claude, and Tzvetkov, Nikolay. "On a model system for the oblique interaction of internal gravity waves." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.2 (2000): 501-523. <http://eudml.org/doc/193998>.
@article{Saut2000,
author = {Saut, Jean-Claude, Tzvetkov, Nikolay},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Kadomtsev-Petviashvili equations; oblique interaction of nonlinear internal waves; global well-posedness; smoothing effect; Fourier transform; Strichartz estimates; lower-order perturbation},
language = {eng},
number = {2},
pages = {501-523},
publisher = {Dunod},
title = {On a model system for the oblique interaction of internal gravity waves},
url = {http://eudml.org/doc/193998},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Saut, Jean-Claude
AU - Tzvetkov, Nikolay
TI - On a model system for the oblique interaction of internal gravity waves
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 2
SP - 501
EP - 523
LA - eng
KW - Kadomtsev-Petviashvili equations; oblique interaction of nonlinear internal waves; global well-posedness; smoothing effect; Fourier transform; Strichartz estimates; lower-order perturbation
UR - http://eudml.org/doc/193998
ER -
References
top- [1] J. Albert, J. Bona and J. C. Saut, Model equations for waves in stratified fluids. Proc. Roy. Soc. Lond. A 453 (1997) 1213-1260. Zbl0886.35111MR1455330
- [2] S. Alinhac and P. Gérard, Opérateurs pseudo-différentiel et théorème de Nash-Moser. Éditions du CNRS, EDP Sciences (1991). Zbl0791.47044MR1172111
- [3] J. M. Ash, J. Cohen and G. Wang, On strongly interacting internal solitary waves. J. Fourier Anal. and Appl. 5 (1996) 507-517. Zbl0990.35120MR1412066
- [4] J. Bona, G. Ponce, J. C. Saut and M. Tom, A model System for strong interaction between internal solitary waves. Comm. Math. Phys.143 (1992) 287-313. Zbl0752.35056MR1145797
- [5] J. -M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales de l'ENS 14 (1981) 209-246. Zbl0495.35024MR631751
- [6] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations. GAFA 3 (1993) 107-156. Zbl0787.35097MR1209299
- [7] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations II. The KdV equation. GAFA 3 (1993). 209-262. Zbl0787.35098MR1215780
- [8] J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation. GAFA 3 (1993). 315-341. Zbl0787.35086MR1223434
- [9] J.-Y. Chemin, Fluid parfaits incompressibles. Astérisque 230 (1995). Zbl0829.76003MR1340046
- [10] R. Coifman and Y. Meyer, Au delà des operateurs pseudodifférentiels. Astérisque 57 (1978). Zbl0483.35082MR518170
- [11] I. Gallagher, Applications of Schochet's methods to parabolic equations. J. Math. Pures Appl. 77 (1998) 989-1054. Zbl1101.35330MR1661025
- [12] J. A. Gear and R. Grimshaw, Weak and strong interactions between internal solitary waves. Stud. Appl. Math. 65 (1984) 235-258. Zbl0548.76020MR742590
- [13] J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain). Séminaire Bourbaki 796, Astérique 237 (1995) 163-187. Zbl0870.35096MR1423623
- [14] J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system. J. Funct. Anal. 151 (1997) 384-436. Zbl0894.35108MR1491547
- [15] R. Grimshaw, Y. Zhu, Oblique interactions between internal solitary waves. Stud. Appl. Math. 92 (1994) 249-270. Zbl0813.76091MR1280241
- [16] D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces. Revista Matematica Ibero-Americana 15 (1999) 1-36. Zbl0923.35119MR1681635
- [17] R. J. Jr. Iório, W. V. L. Nunes, On equations of KP-type. Proc. Roy. Soc. Edinburgh A 128 (1998) 725-743. Zbl0911.35103MR1635416
- [18] P. Isaza, J. Mejia and V. Stallbohm, El problema de Cauchy para la ecuacion de Kadomtsev-Petviashvili (KP-II) en espacios de Sobolev Hs, s › 0, preprint (1997). MR1454575
- [19] F. Linares, L2 global well-posedness of the initial value problem associated to the Benjamin equation. J. Differential Equations 152 (1999) 377-393. Zbl0929.35133MR1674557
- [20] C. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equations. J. AMS 9 (1996) 573-603. Zbl0848.35114MR1329387
- [21] C. Kenig, G. Ponce and L. Vega, Quadratic forms for 1 - D semilinear Schrödinger equation. Trans. Amer. Math. Soc. 348 (996) 3323-3353. Zbl0862.35111MR1357398
- [22] J. C. Saut, Remarks on the generalized Kadomtsev-Petviashvih equations. Indiana Uinv. Math. J. 42 (1993) 1017-1029. Zbl0814.35119MR1254130
- [23] R. Strichartz, Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J.44 (1977) 705-714. Zbl0372.35001MR512086
- [24] H. Takaoka, Well-posedness for the Kadomtsev-Petvtashvili II equation, preprint (1998). Zbl0994.35108MR1785680
- [25] N. Tzvetkov, Global low regularity solutions for Kadomtsev-Petviashvili equation. Diff. Int. Eq. (to appear). Zbl0977.35125MR1787069
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.