On a model system for the oblique interaction of internal gravity waves

Jean-Claude Saut; Nikolay Tzvetkov

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 2, page 501-523
  • ISSN: 0764-583X

How to cite

top

Saut, Jean-Claude, and Tzvetkov, Nikolay. "On a model system for the oblique interaction of internal gravity waves." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.2 (2000): 501-523. <http://eudml.org/doc/193998>.

@article{Saut2000,
author = {Saut, Jean-Claude, Tzvetkov, Nikolay},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Kadomtsev-Petviashvili equations; oblique interaction of nonlinear internal waves; global well-posedness; smoothing effect; Fourier transform; Strichartz estimates; lower-order perturbation},
language = {eng},
number = {2},
pages = {501-523},
publisher = {Dunod},
title = {On a model system for the oblique interaction of internal gravity waves},
url = {http://eudml.org/doc/193998},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Saut, Jean-Claude
AU - Tzvetkov, Nikolay
TI - On a model system for the oblique interaction of internal gravity waves
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 2
SP - 501
EP - 523
LA - eng
KW - Kadomtsev-Petviashvili equations; oblique interaction of nonlinear internal waves; global well-posedness; smoothing effect; Fourier transform; Strichartz estimates; lower-order perturbation
UR - http://eudml.org/doc/193998
ER -

References

top
  1. [1] J. Albert, J. Bona and J. C. Saut, Model equations for waves in stratified fluids. Proc. Roy. Soc. Lond. A 453 (1997) 1213-1260. Zbl0886.35111MR1455330
  2. [2] S. Alinhac and P. Gérard, Opérateurs pseudo-différentiel et théorème de Nash-Moser. Éditions du CNRS, EDP Sciences (1991). Zbl0791.47044MR1172111
  3. [3] J. M. Ash, J. Cohen and G. Wang, On strongly interacting internal solitary waves. J. Fourier Anal. and Appl. 5 (1996) 507-517. Zbl0990.35120MR1412066
  4. [4] J. Bona, G. Ponce, J. C. Saut and M. Tom, A model System for strong interaction between internal solitary waves. Comm. Math. Phys.143 (1992) 287-313. Zbl0752.35056MR1145797
  5. [5] J. -M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales de l'ENS 14 (1981) 209-246. Zbl0495.35024MR631751
  6. [6] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations. GAFA 3 (1993) 107-156. Zbl0787.35097MR1209299
  7. [7] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations II. The KdV equation. GAFA 3 (1993). 209-262. Zbl0787.35098MR1215780
  8. [8] J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation. GAFA 3 (1993). 315-341. Zbl0787.35086MR1223434
  9. [9] J.-Y. Chemin, Fluid parfaits incompressibles. Astérisque 230 (1995). Zbl0829.76003MR1340046
  10. [10] R. Coifman and Y. Meyer, Au delà des operateurs pseudodifférentiels. Astérisque 57 (1978). Zbl0483.35082MR518170
  11. [11] I. Gallagher, Applications of Schochet's methods to parabolic equations. J. Math. Pures Appl. 77 (1998) 989-1054. Zbl1101.35330MR1661025
  12. [12] J. A. Gear and R. Grimshaw, Weak and strong interactions between internal solitary waves. Stud. Appl. Math. 65 (1984) 235-258. Zbl0548.76020MR742590
  13. [13] J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain). Séminaire Bourbaki 796, Astérique 237 (1995) 163-187. Zbl0870.35096MR1423623
  14. [14] J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system. J. Funct. Anal. 151 (1997) 384-436. Zbl0894.35108MR1491547
  15. [15] R. Grimshaw, Y. Zhu, Oblique interactions between internal solitary waves. Stud. Appl. Math. 92 (1994) 249-270. Zbl0813.76091MR1280241
  16. [16] D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces. Revista Matematica Ibero-Americana 15 (1999) 1-36. Zbl0923.35119MR1681635
  17. [17] R. J. Jr. Iório, W. V. L. Nunes, On equations of KP-type. Proc. Roy. Soc. Edinburgh A 128 (1998) 725-743. Zbl0911.35103MR1635416
  18. [18] P. Isaza, J. Mejia and V. Stallbohm, El problema de Cauchy para la ecuacion de Kadomtsev-Petviashvili (KP-II) en espacios de Sobolev Hs, s › 0, preprint (1997). MR1454575
  19. [19] F. Linares, L2 global well-posedness of the initial value problem associated to the Benjamin equation. J. Differential Equations 152 (1999) 377-393. Zbl0929.35133MR1674557
  20. [20] C. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equations. J. AMS 9 (1996) 573-603. Zbl0848.35114MR1329387
  21. [21] C. Kenig, G. Ponce and L. Vega, Quadratic forms for 1 - D semilinear Schrödinger equation. Trans. Amer. Math. Soc. 348 (996) 3323-3353. Zbl0862.35111MR1357398
  22. [22] J. C. Saut, Remarks on the generalized Kadomtsev-Petviashvih equations. Indiana Uinv. Math. J. 42 (1993) 1017-1029. Zbl0814.35119MR1254130
  23. [23] R. Strichartz, Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J.44 (1977) 705-714. Zbl0372.35001MR512086
  24. [24] H. Takaoka, Well-posedness for the Kadomtsev-Petvtashvili II equation, preprint (1998). Zbl0994.35108MR1785680
  25. [25] N. Tzvetkov, Global low regularity solutions for Kadomtsev-Petviashvili equation. Diff. Int. Eq. (to appear). Zbl0977.35125MR1787069

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.