Around 3D Boltzmann non linear operator without angular cutoff, a new formulation

Radjesvarane Alexandre

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 3, page 575-590
  • ISSN: 0764-583X

How to cite

top

Alexandre, Radjesvarane. "Around 3D Boltzmann non linear operator without angular cutoff, a new formulation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.3 (2000): 575-590. <http://eudml.org/doc/194003>.

@article{Alexandre2000,
author = {Alexandre, Radjesvarane},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {non-cutoff Boltzmann collision operator; Boltzmann-Coulomb operator; pseudodifferential operators},
language = {eng},
number = {3},
pages = {575-590},
publisher = {Dunod},
title = {Around 3D Boltzmann non linear operator without angular cutoff, a new formulation},
url = {http://eudml.org/doc/194003},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Alexandre, Radjesvarane
TI - Around 3D Boltzmann non linear operator without angular cutoff, a new formulation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 3
SP - 575
EP - 590
LA - eng
KW - non-cutoff Boltzmann collision operator; Boltzmann-Coulomb operator; pseudodifferential operators
UR - http://eudml.org/doc/194003
ER -

References

top
  1. [1] R. Alexandre, Sur l'opérateur de Boltzmann linéaire 3D sans troncature angulaire. Note C. R. Acad. Sci. Paris Sér. I 325 (1997) 959-962. Zbl0897.76081MR1485611
  2. [2] R. Alexandre, Remarks on 3D Boltzmann linear equation without cutoff Trans. Theory and Stat. Phys. 28 (1999) 433-473. Zbl0939.35147MR1705619
  3. [3] R. Alexandre, Sur l'opérateur de Boltzmann non linéaire 3D sans troncature angulaire. Note C. R. Acad. Sci. Paris Sér. I 326 (1998) 165-168. Zbl0913.35138MR1646952
  4. [4] R. Alexandre, Sur le taux de dissipation d'entropie sans troncature angulaire. Note C. R. Acad. Sci. Paris Sér. 7(1998) 311-315. Zbl0916.76072MR1648449
  5. [5] R. Alexandre, Une définition des solutions renormalisées pour l'équation de Boltzmann. Note C. R. Acad. Sci. Paris. Sér. I 328 (1999) 987-991. Zbl0931.35128MR1696193
  6. [6] R. Alexandre, The linearised Boltzmann operator and applications. In préparation 
  7. [7] R. Alexandre, Solutions Maxwelliennes pour l'équation de Boltzmann sans troncature angulaire. Note submitted to C. R. Acad. Sci. Paris Sér. I (to appear). Zbl0942.35139
  8. [8] R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long range interactions. Arch. Rat. Mech. Anal. (to appear). Zbl0968.76076MR1765272
  9. [9] R. Alexandre, C. Villani, On the Boltzmann equation for long-range interactions and the Landau approximation in plasma physics. (Preprints ENS Ulm DMA-99-22, 1999). 
  10. [10] L. Arkeryd, On the Boltzmann equation. Arch. Rat. Mech. Anal. 45 (1972) 1-34. Zbl0245.76059MR339665
  11. [11] L. Arkeryd, Intermolecular forces of infinite range and the Boltzmann equation. Arch. Rat. Mech. Anal. 77 (1981) 11-21. Zbl0547.76085MR630119
  12. [12] R. Balescu, Statistical Mechanics of charged particles. Wiley Interscience, N.Y, USA (1963). Zbl0125.23106MR160579
  13. [13] T. Carleman, Problèmes Mathématiques dans la Theorie cinétique des Gaz. Almquist and Wiksell, Uppsala (1957). Zbl0077.23401MR98477
  14. [14] C. Cercignani, Mathematical Methods in Kinetic. Theory 2nd Ed Plenum (1990). Zbl0726.76083MR1069558
  15. [15] C. Cercignam, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases. Series in Appl. Sci. 106, Springer Verlag, New York (1994). Zbl0813.76001MR1307620
  16. [16] P. Degond and B. Lucquin, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case. Math. Models Methods Appl. Sci. 2-2 (1992) 167-182. Zbl0755.35091MR1167768
  17. [17] L. Desvillettes, Regularisation properties of the 2D homogeneous Boltzmann equation. Transport Theory Statist. Phys. 26 (1997) 341-357. Zbl0901.76072MR1475459
  18. [18] L. Desvillettes, Regularisation for the non-cutoff 2D radially symmetric Boltzmann equation. Transport Theory Statist. Phys. 25 (1996) 383-394. Zbl0871.76077MR1407542
  19. [19] L. Desvillettes, On asymptotics of the Boltzmann equation when the collisions become grazing. Transport Theory Stat. Phys. 21 (1992) 259-276. Zbl0769.76059MR1165528
  20. [20] L. Desvillettes and B. Wennberg, work in préparation. 
  21. [21] R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equation; Global existence and weak stability. Ann. Maths. 130 (1989) 321-366. Zbl0698.45010MR1014927
  22. [22] R. J. DiPerna and P. L. Lions, Global weak solutions of kinetic equations. Sem. Mat. Torino 46 (1988) 259-288. Zbl0813.35087MR1101105
  23. [23] T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics. J. Stat. Phys. 89 (1997) 751-776. Zbl0918.35136MR1484062
  24. [24] P. L. Lions, Compactness in Boltzmann's equation, via FIO and applic. J. Math. Kyoto Univ. 34 (1994) Part I 391-427, Part II 429-461, Part III 539-584. Zbl0831.35139
  25. [25] P. L. Lions, On Boltzmann and Landau equations. Phil. Trans. Roy. Soc. London A-346 (1994) 191-204. Zbl0809.35137MR1278244
  26. [26] P. L. Lions, Regularity and compactness for Boltzmann collision operators without angular cutoff. Note C. R. Acad. Sci. Paris Sér. I 326 (1998) 37-41. Zbl0920.35114MR1649477
  27. [27] Y. P. Pao, Boltzmann Collision Operator with Inverse power Intermolecular potentials. C.P.A.M. 27 ( 1974) Part I 407-428; Part II 559-581. Zbl0304.45010MR636407
  28. [28] M. E. Taylor, Pseudo-Differenttal Operators. Princeton Univ. Press. (1981). 
  29. [29] M. E. Taylor, Pdo and non linear PDE, Birkhauser, Boston (1991). 
  30. [30] C. Villani, Contributions à l'étude mathématique des équations de Boltzmann et de Landau en théorie cinétique des gaz et des plasma, Thèse Université Paris-Dauphine (1998). 
  31. [31] C. Villani, Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off. Rev. Mat. Iberoam (to appear). Zbl0934.45010MR1715411
  32. [32] C. Villani, Conservative forms of Boltzmann's collision operator: Landau revisited. Math. Mod. Num. An. (1998). Zbl0919.35140
  33. [33] S. Ukai, Solutions of the Boltzmann equation. In: Patterns and Waves, North-Holland (1985). Zbl0633.76078MR882376
  34. [34] B. Wennberg, Regularity in the Boltzmann equation and the Radon transform. CPDE 19, (1994) 2057-2074. Zbl0818.35128MR1301182

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.