Existence for an unsteady fluid-structure interaction problem

Céline Grandmont; Yvon Maday

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 3, page 609-636
  • ISSN: 0764-583X

How to cite

top

Grandmont, Céline, and Maday, Yvon. "Existence for an unsteady fluid-structure interaction problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.3 (2000): 609-636. <http://eudml.org/doc/194005>.

@article{Grandmont2000,
author = {Grandmont, Céline, Maday, Yvon},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {time-dependent domain; coupled equations; fluid-structure interaction; rigid bodies; incompressible Navier-Stokes equations; local solvability in time; Banach fixed point theorem; contraction mapping principle},
language = {eng},
number = {3},
pages = {609-636},
publisher = {Dunod},
title = {Existence for an unsteady fluid-structure interaction problem},
url = {http://eudml.org/doc/194005},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Grandmont, Céline
AU - Maday, Yvon
TI - Existence for an unsteady fluid-structure interaction problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 3
SP - 609
EP - 636
LA - eng
KW - time-dependent domain; coupled equations; fluid-structure interaction; rigid bodies; incompressible Navier-Stokes equations; local solvability in time; Banach fixed point theorem; contraction mapping principle
UR - http://eudml.org/doc/194005
ER -

References

top
  1. [1] R. A. Adams, Sobolev spaces Academic Press, New York NY, San Francisco CA, London (1975). Zbl0314.46030MR450957
  2. [2] G. Allain, Un problème de Navier-Stokes avec surface libre. Thèse de troisième cycle de l'Université Paris VI, France (1983). 
  3. [3] G. Allain, Small-time existence for the Navier-Stokes equations with a free surface. Appl. Math. Optim., 16 (1987) 37-50. Zbl0655.76021MR883473
  4. [4] J. T. Beale, The Initial Value Problem for the Navier-Stokes Equation with a Free Surface. Comm. Pure Appl. Math., XXXIV (1981) 359-392. Zbl0464.76028MR611750
  5. [5] H. Brezis, Analyse fonctionnelle: Théorie et applications. Masson, Paris (1983). Zbl0511.46001MR697382
  6. [6] C. Conca, J. San Martin and M. Tucsnak, Motion of a rigid body in viscous fluid. C. R. Acad. Sci Paris Sèrie I 32 (1999) 473-478. Zbl0937.76012MR1680008
  7. [7] B. Desjardins and M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration Mech. Anal. 146 (1999) 59-71. Zbl0943.35063MR1682663
  8. [8] B. Desjardins and M. J. Esteban, On weak solutions for fluid-rigid structure interaction: compressible and incompressible models. Comm. Partial Differ. Eq. (to appear) Zbl0953.35118MR1765138
  9. [9] G. Duvaut, Mécanique des milieux continus. Masson, Paris, Milan, Barcelone, Mexico (1990) 
  10. [10] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin Heidelberg (1986). Zbl0585.65077MR851383
  11. [11] R. Glowinski and B. Maury, Fluid-particule flow a symmetric formulation. C. R. Acad. Sci. Paris Sér. I Math. t. 324, (1997) 1079-1084. Zbl0880.76045MR1451255
  12. [12] C. Grandmont and Y. Maday, Existence de solutions d'un problème de couplage fluide-structure bidimensionnel instationnaire. C. R. Acad. Sci. Paris Sér. I Math. t. 326, (1998) 525-530. Zbl0924.76022MR1648981
  13. [13] J. Heywood and R. Rannacher, Finite-element approximation of the nonstationnary. Navier-Stokes problem. Part III. Smoothing property and higher order error estimates for spatial discrétisation SIAM J. Numer. Anal. 25 (1988) 489-512. Zbl0646.76036MR942204
  14. [14] J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. T. I et II, Dunod, Paris (1968). Zbl0165.10801
  15. [15] D. Serre, Chute libre d'un solide dans un fluide visqueux incompressible : Existence. Japan J. Appl. Math. 4 (1987) 33-73. Zbl0655.76022MR899206
  16. [16] V. A. Solonnikov, Solvability of a Problem on the Motion of a Viscous Incompressible Fluid Bounded by a Free Surface. Math. USSR Izvestiya 4-1 (1977) 1388-1424. Zbl0398.76024MR495629
  17. [17] V. A. Solonnikov, On the Transiant Motion of an Isolated Volume of Viscous Incompressible Fluid. Math. USSR Izvestiya 31 (1988) 381-405. Zbl0850.76180MR925094
  18. [18] V. A. Solonnikov, Unsteady motion of a finite mass of fluid, bounded by a free surface J. Soviet. Math. 40 (1988) 672-686. Zbl0639.76035MR869248
  19. [19] R. Temam, Navier-Stokes Equations. North-Holland Pubhsling Company (1977). Zbl0383.35057MR609732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.