A Legendre spectral collocation method for the biharmonic Dirichlet problem

Bernard Bialecki; Andreas Karageorghis

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 3, page 637-662
  • ISSN: 0764-583X

How to cite

top

Bialecki, Bernard, and Karageorghis, Andreas. "A Legendre spectral collocation method for the biharmonic Dirichlet problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.3 (2000): 637-662. <http://eudml.org/doc/194006>.

@article{Bialecki2000,
author = {Bialecki, Bernard, Karageorghis, Andreas},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {biharmonic Dirichlet problem; Legendre spectral collocation method; Schur complement; preconditioned conjugate gradient method; biharmonic equation; numerical results},
language = {eng},
number = {3},
pages = {637-662},
publisher = {Dunod},
title = {A Legendre spectral collocation method for the biharmonic Dirichlet problem},
url = {http://eudml.org/doc/194006},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Bialecki, Bernard
AU - Karageorghis, Andreas
TI - A Legendre spectral collocation method for the biharmonic Dirichlet problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 3
SP - 637
EP - 662
LA - eng
KW - biharmonic Dirichlet problem; Legendre spectral collocation method; Schur complement; preconditioned conjugate gradient method; biharmonic equation; numerical results
UR - http://eudml.org/doc/194006
ER -

References

top
  1. [1] C. Bernardi and Y. Maday, Spectral methods for the approximation of fourth order problems. Applications to the Stokes and Navier-Stokes equations. Comput. and Structures 30 (1988) 205-216. Zbl0668.76038MR964358
  2. [2] C. Bernardi and Y. Maday, Some spectral approximations of one-dimensional fourth order problems, in: Progress in Approximation Theory, P. Nevai and A. Pinkus Eds., Academic Press, San Diego (1991), 43-116. MR1114769
  3. [3] C. Bernardi and Y. Maday, Spectral methods, in Handbook of Numerical Analysis, Vol. V, Part 2: Techniques of Scientific Computing, P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1997) 209-485. MR1470226
  4. [4] C. Bernardi, G. Coppoletta and Y. Maday, Some spectral approximations of two-dimensional fourth order problems. Math. Comp. 59 (1992) 63-76. Zbl0754.65088MR1134714
  5. [5] B. Bialecki, A fast solver for the orthogonal spline collocation solution of the biharmonic Dirichlet problem on rectangles. submitted Zbl1032.65134
  6. [6] P. E. Bjørstad and B. P. Tjøstheim, Efficient algorithms for solving a fourth-order equation with the spectral-Galerkin method. SIAM J. Sci. Comput. 18 (1997) 621-632. Zbl0939.65129MR1433799
  7. [7] J. P. Boyd, Chebyshev and Fourier Spectral Methods. Springer-Verlag, Berlin (1989). Zbl0681.65079
  8. [8] J. Jr. Douglas and T. Dupont, Collocation Methods for Parabolic Equations in a Single Space Variable. Lect. Notes Math. 358, Springer-Verlag, New York, 1974. Zbl0279.65097MR483559
  9. [9] G. H. Golub and C. F. van Loan, Matrix Computations, Third edn., The Johns Hopkins University Press, Baltimore, MD (1996). Zbl0865.65009MR1417720
  10. [10] W. Heinrichs, A stabilized treatment of the biharmonic operator with spectral methods. SIAM J. Sci. Stat. Comput. 12 (1991) 1162-1172. Zbl0729.65088MR1114979
  11. [11] A. Karageorghis, The numerical solution of laminar flow in a re-entrant tube geometry by a Chebyshev spectral element collocation method. Comput. Methods Appl. Mech. Engng. 100 (1992) 339-358. Zbl0825.76607
  12. [12] A. Karageorghis, A fully conforming spectral collocation scheme for second and fourth order problems. Comput. Methods Appl. Mech. Engng. 126 (1995) 305-314. Zbl0945.65522MR1360098
  13. [13] A. Karageorghis and T. N. Phillips, Conforming Chebyshev spectral collocation methods for the solution of laminar flow in a constricted channel. IMA Journal Numer. Anal. 11 (1991) 33-55. Zbl0709.76039MR1089547
  14. [14] A. Karageorghis and T. Tang, A spectral domain decomposition approach for steady Navier-Stokes problems in circular geometries. Computers and Fluids 25 (1996) 541-549. Zbl0892.76064MR1408535
  15. [15] Z.-M. Lou, B. Bialecki, and G. Fairweather, Orthogonal spline collocation methods for biharmonic problems. Numer. Math. 80 (1998) 267-303. Zbl0908.65103MR1645045
  16. [16] W. W. Schuitz, N. Y. Lee and J. P. Boyd, Chebyshev pseudospectral method of viscous flows with corner singularities. J. Sci. Comput. 4 (1989) 1-19. Zbl0679.76042
  17. [17] J. Shen, Efficient spectral-Galerkin method I. Direct solvers of second- and forth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15 (1994) 1489-1505. Zbl0811.65097MR1298626

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.