A Legendre spectral collocation method for the biharmonic Dirichlet problem
Bernard Bialecki; Andreas Karageorghis
- Volume: 34, Issue: 3, page 637-662
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBialecki, Bernard, and Karageorghis, Andreas. "A Legendre spectral collocation method for the biharmonic Dirichlet problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.3 (2000): 637-662. <http://eudml.org/doc/194006>.
@article{Bialecki2000,
author = {Bialecki, Bernard, Karageorghis, Andreas},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {biharmonic Dirichlet problem; Legendre spectral collocation method; Schur complement; preconditioned conjugate gradient method; biharmonic equation; numerical results},
language = {eng},
number = {3},
pages = {637-662},
publisher = {Dunod},
title = {A Legendre spectral collocation method for the biharmonic Dirichlet problem},
url = {http://eudml.org/doc/194006},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Bialecki, Bernard
AU - Karageorghis, Andreas
TI - A Legendre spectral collocation method for the biharmonic Dirichlet problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 3
SP - 637
EP - 662
LA - eng
KW - biharmonic Dirichlet problem; Legendre spectral collocation method; Schur complement; preconditioned conjugate gradient method; biharmonic equation; numerical results
UR - http://eudml.org/doc/194006
ER -
References
top- [1] C. Bernardi and Y. Maday, Spectral methods for the approximation of fourth order problems. Applications to the Stokes and Navier-Stokes equations. Comput. and Structures 30 (1988) 205-216. Zbl0668.76038MR964358
- [2] C. Bernardi and Y. Maday, Some spectral approximations of one-dimensional fourth order problems, in: Progress in Approximation Theory, P. Nevai and A. Pinkus Eds., Academic Press, San Diego (1991), 43-116. MR1114769
- [3] C. Bernardi and Y. Maday, Spectral methods, in Handbook of Numerical Analysis, Vol. V, Part 2: Techniques of Scientific Computing, P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1997) 209-485. MR1470226
- [4] C. Bernardi, G. Coppoletta and Y. Maday, Some spectral approximations of two-dimensional fourth order problems. Math. Comp. 59 (1992) 63-76. Zbl0754.65088MR1134714
- [5] B. Bialecki, A fast solver for the orthogonal spline collocation solution of the biharmonic Dirichlet problem on rectangles. submitted Zbl1032.65134
- [6] P. E. Bjørstad and B. P. Tjøstheim, Efficient algorithms for solving a fourth-order equation with the spectral-Galerkin method. SIAM J. Sci. Comput. 18 (1997) 621-632. Zbl0939.65129MR1433799
- [7] J. P. Boyd, Chebyshev and Fourier Spectral Methods. Springer-Verlag, Berlin (1989). Zbl0681.65079
- [8] J. Jr. Douglas and T. Dupont, Collocation Methods for Parabolic Equations in a Single Space Variable. Lect. Notes Math. 358, Springer-Verlag, New York, 1974. Zbl0279.65097MR483559
- [9] G. H. Golub and C. F. van Loan, Matrix Computations, Third edn., The Johns Hopkins University Press, Baltimore, MD (1996). Zbl0865.65009MR1417720
- [10] W. Heinrichs, A stabilized treatment of the biharmonic operator with spectral methods. SIAM J. Sci. Stat. Comput. 12 (1991) 1162-1172. Zbl0729.65088MR1114979
- [11] A. Karageorghis, The numerical solution of laminar flow in a re-entrant tube geometry by a Chebyshev spectral element collocation method. Comput. Methods Appl. Mech. Engng. 100 (1992) 339-358. Zbl0825.76607
- [12] A. Karageorghis, A fully conforming spectral collocation scheme for second and fourth order problems. Comput. Methods Appl. Mech. Engng. 126 (1995) 305-314. Zbl0945.65522MR1360098
- [13] A. Karageorghis and T. N. Phillips, Conforming Chebyshev spectral collocation methods for the solution of laminar flow in a constricted channel. IMA Journal Numer. Anal. 11 (1991) 33-55. Zbl0709.76039MR1089547
- [14] A. Karageorghis and T. Tang, A spectral domain decomposition approach for steady Navier-Stokes problems in circular geometries. Computers and Fluids 25 (1996) 541-549. Zbl0892.76064MR1408535
- [15] Z.-M. Lou, B. Bialecki, and G. Fairweather, Orthogonal spline collocation methods for biharmonic problems. Numer. Math. 80 (1998) 267-303. Zbl0908.65103MR1645045
- [16] W. W. Schuitz, N. Y. Lee and J. P. Boyd, Chebyshev pseudospectral method of viscous flows with corner singularities. J. Sci. Comput. 4 (1989) 1-19. Zbl0679.76042
- [17] J. Shen, Efficient spectral-Galerkin method I. Direct solvers of second- and forth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15 (1994) 1489-1505. Zbl0811.65097MR1298626
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.