Adaptive wavelet methods for saddle point problems

Stephan Dahlke; Reinhard Hochmuth; Karsten Urban

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 5, page 1003-1022
  • ISSN: 0764-583X

How to cite

top

Dahlke, Stephan, Hochmuth, Reinhard, and Urban, Karsten. "Adaptive wavelet methods for saddle point problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.5 (2000): 1003-1022. <http://eudml.org/doc/194018>.

@article{Dahlke2000,
author = {Dahlke, Stephan, Hochmuth, Reinhard, Urban, Karsten},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {adaptive schemes; saddle point problems; wavelets; multiscale methods; Uzawa's algorithm; a posteriori error estimates; numerical examples},
language = {eng},
number = {5},
pages = {1003-1022},
publisher = {Dunod},
title = {Adaptive wavelet methods for saddle point problems},
url = {http://eudml.org/doc/194018},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Dahlke, Stephan
AU - Hochmuth, Reinhard
AU - Urban, Karsten
TI - Adaptive wavelet methods for saddle point problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 5
SP - 1003
EP - 1022
LA - eng
KW - adaptive schemes; saddle point problems; wavelets; multiscale methods; Uzawa's algorithm; a posteriori error estimates; numerical examples
UR - http://eudml.org/doc/194018
ER -

References

top
  1. [1] H.W. Alt, Lineare Funktionalanalysis (in german). Springer-Verlag, Berlin (1985). Zbl0577.46001
  2. [2] K. Arrow, L. Hurwicz and H. Uzawa, Studies in Nonlinear Programming Stanford University Press, Stanford, CA (1958). Zbl0091.16002MR108399
  3. [3] S. Bertoluzza, A posteriori error estimates for the wavelet Galerkin method. Appl. Math. Lett. 8 (1995) 1-6. Zbl0835.65121MR1356289
  4. [4] S. Bertoluzza and R. Masson, Espaces vitesses-pression d'ondelettes adaptives satisfaisant la condition Inf-Sup. C. R. Acad. Sci. Paris, Sér. Math. 323 (1996). Zbl0859.76049MR1408777
  5. [5] D. Braess, Finite Elements Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge (1997). Zbl0894.65054MR1463151
  6. [6] J.H. Bramble, J.E. Pasciak and A.T. Vassilev, Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34 (1997) 1072-1092. Zbl0873.65031MR1451114
  7. [7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). Zbl0788.73002MR1115205
  8. [8] A. Cohen, Wavelet methods in Numerical Analysis, in: Handbook of Numerical Analysis, North Holland, Amsterdam (to appear). Zbl0976.65124MR1804747
  9. [9] A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet schemes for elliptic operator equations - Convergence rates, RWTH Aachen, IGPM Preprint 165, 1998 Math. Comput. (to appear). 
  10. [10] S. Dahlke, W. Dahmen, R. Hochmuth and R. Schneider, Stable multiscale bases and local error estimation for elliptic problems. Appl. Numer. Math. 23 (1997) 21-48. Zbl0872.65098MR1438079
  11. [11] S. Dahlke, R. Hochmuth and K. Urban, Adaptive wavelet methods for saddle point problems, Preprint 1126, Istituto di Analisi Numerica del C. N. R. (1999). Zbl0965.65074
  12. [12] S. Dahlke, R. Hochmuth and K. Urban, Convergent Adaptive Wavelet Methods for the Stokes Problem, in: Multigrid Methods VI, E. Dick, K. Riemslagh, J. Vierendeels Eds., Springer-Verlag (2000). Zbl0998.76067MR1786767
  13. [13] W. Dahmen, Stability of multiscale transformations. J. Fourier Anal. Appl. 2 (1996) 341-361. Zbl0919.46006MR1395769
  14. [14] W. Dahmen, Wavelet and multiscale methods for operator equations. Acta Numerica 6 (1997) 55-228. Zbl0884.65106MR1489256
  15. [15] W. Dahmen, Wavelet methods for PDEs - Some recent developments, RWTH Aachen, IGPM Preprint 183 (1999). Zbl0974.65101MR1820873
  16. [16] W. Dahmen, A. Kunoth and K. Urban, A Wavelet-Galerkin method for the Stokes problem. Computing 56 (1996) 259-302. Zbl0849.65077MR1393010
  17. [17] H.C. Elman and G.H. Golub, Inexact and preconditioned Uzawa algorithme for saddle point problems. SIAM J. Numer. Anal.31 (1994) 1645-1661. Zbl0815.65041MR1302679
  18. [18] M. Fortin, Old and new Finite Elements for incompressible flows. Int. J. Numer. Meth. Fluids 1 (1981) 347-364. Zbl0467.76030MR633812
  19. [19] R. Hochmuth, Stable multiscale discretizations for saddle point problems and preconditioning. Numer. Funct. Anal. and Optimiz. 19 (1998) 789-806. Zbl0913.65113MR1642569
  20. [20] P.G. Lemarié-Rieusset, Analyses multi-résolutions non orthogonales, Commutation entre Projecteurs et Dérivation et Ondelettes Vecteurs à divergence nulle. Rev. Mat. Iberoam. 8 (1992) 221-236. Zbl0874.42022MR1191345
  21. [21] R. Masson, Wavelet discretizations of the Stokes problem in velocity-pressure variables, Preprint, Univ. P. et M. Curie, Paris (1998). 
  22. [22] K. Urban, On divergence-free wavelets. Adv. Comput. Math. 4 (1995) 51-82. Zbl0822.42020MR1338895
  23. [23] K. Urban, Wavelet bases in H(div) and H(curl), Preprint 1106, Istituto di Analisi Numerica del C. N. R., 1998 Math Comput (to appear) Zbl0963.65155MR1710628

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.