Un schéma d’interpolation rationnel sur un quadrilatère de classe
- Volume: 34, Issue: 5, page 913-922
- ISSN: 0764-583X
Access Full Article
topHow to cite
topLaghchim-Lahlou, Mohammed. "Un schéma d’interpolation rationnel sur un quadrilatère de classe $C^2$." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.5 (2000): 913-922. <http://eudml.org/doc/194024>.
@article{Laghchim2000,
author = {Laghchim-Lahlou, Mohammed},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {rational interpolation; finite elements; Hermité interpolation},
language = {fre},
number = {5},
pages = {913-922},
publisher = {Dunod},
title = {Un schéma d’interpolation rationnel sur un quadrilatère de classe $C^2$},
url = {http://eudml.org/doc/194024},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Laghchim-Lahlou, Mohammed
TI - Un schéma d’interpolation rationnel sur un quadrilatère de classe $C^2$
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 5
SP - 913
EP - 922
LA - fre
KW - rational interpolation; finite elements; Hermité interpolation
UR - http://eudml.org/doc/194024
ER -
References
top- [1] K.N. Agbeve, Eléments finis triangulaires rationnels de classe Ck. Thèse de Doctorat, Université de Nantes (1993).
- [2] P. Alfeld, A bivariate C2 Clough-Tocher scheme. Comput. Aided Geom. Design 1 (1984) 257-267. Zbl0597.65005
- [3] J.H. Argyris, I. Fried et D.W. Scharpf, The TUBA family of plate elements for the matrix displacement method. The Aeronautical Journal of the Royal Aeronautical Society 72 (1968) 701-709.
- [4] G. Farin, Triangular Bernstein-Bézier patches. Comput. Aided Geom. Design 2 (1986) 83-127. MR867116
- [5] G. Fraeijs de Veubeke, Bending and Stretching of plates, in Conference on matrix methods in structural mechanics, Wright Patterson A.F.B., Ohio (1965).
- [6] G. Herron, A characterisation of C1 discrete triangular interpolants. SIAM. J. Numer. Anal. 22 (1985) 811-819. Zbl0593.65008MR795955
- [7] M.J. Lai, On dual functionals of polynomials in B-form. J. Approx. Theory 67 (1991) 19-37. Zbl0738.41014MR1127818
- [8] M. Laghchim-Lahlou et P. Sablonnière, Triangular finite elements of HCT type and class Cp. Adv. Comput. Math. 2 (1994) 101-122. Zbl0832.65003MR1266026
- [9] M. Laghchim-Lahlou et P. Sablonnière, Cr-finite elements of Powell-Sabin type on the three direction mesh. Adv. Comput. Math. 6 (1996) 191-206. Zbl0867.65002MR1431792
- [10] A. Le Méhauté, Interpolation et approximation par des fonctions polynômiales par morceaux dans ℝn. Thèse de Doctorat ès Sciences, Université de Rennes (1984).
- [11] M. Laghchim-Lahlou et P. Sablonnière, Quadrilateral finite elements of FVS type and class Cp. Numer. Math. 70 (1995)229-243. Zbl0824.41012MR1324738
- [12] M.J. Lai et L.L. Schumaker, Scattered data interpolation using C2 Supersplines of degree six. SIAM. J. Numer. Anal. 34 (1997) 905-921. Zbl0872.41004MR1451106
- [13] L.L. Schumaker, On the dimension of spaces of piecewise polynomials in two variables, in Multivariate Approximation Theory, W. Schempp et K. Zeller Eds., Birkhäuser Verlag, ISNM 51 (1979) 396-412. Zbl0461.41006MR560683
- [14] T. Wang, A C2 quintic spline interpolation scheme on triangulation. Comput. Aided Geom. Design 9 (1992) 379-386. Zbl0770.65005MR1192667
- [15] A. Ženišek, A general theorem on triangular finite Cm-elements. RAIRO Anal. Numér. 8 (1974) 119-127. Zbl0321.41003MR388731
- [16] O.C. Zienkiewicz, The finite element method in structural continum mechanics. Mc Graw Hill, London (1967). Zbl0237.73071
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.