On the domain geometry dependence of the LBB condition

Evgenii V. Chizhonkov; Maxim A. Olshanskii

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 5, page 935-951
  • ISSN: 0764-583X

How to cite

top

Chizhonkov, Evgenii V., and Olshanskii, Maxim A.. "On the domain geometry dependence of the LBB condition." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.5 (2000): 935-951. <http://eudml.org/doc/194026>.

@article{Chizhonkov2000,
author = {Chizhonkov, Evgenii V., Olshanskii, Maxim A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {domain geometry dependence; LBB condition; finite element velocity-pressure pair; mesh-independent limit; Nečas inequality},
language = {eng},
number = {5},
pages = {935-951},
publisher = {Dunod},
title = {On the domain geometry dependence of the LBB condition},
url = {http://eudml.org/doc/194026},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Chizhonkov, Evgenii V.
AU - Olshanskii, Maxim A.
TI - On the domain geometry dependence of the LBB condition
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 5
SP - 935
EP - 951
LA - eng
KW - domain geometry dependence; LBB condition; finite element velocity-pressure pair; mesh-independent limit; Nečas inequality
UR - http://eudml.org/doc/194026
ER -

References

top
  1. [1] P.P. Aristov and E.V. Chizhonkov, On the Constant in the LBB condition for rectangular domains. Report No 9535, Depof. Math. Univ. of Nijmegen, The Netherlands (1995). Zbl0871.76051MR1788543
  2. [2] I. Babuška, The finite element method with Lagrange multipliers. Numer. Math. 20(1973) 179 192. Zbl0258.65108MR359352
  3. [3] D. Boffi, F. Brezzi and L. Gastaldi, On the convergence of eigenvalues formixed formulations. Ann. Sc. Norm. Sup. Pisa 25 (1997) 131 154. Zbl1003.65052MR1655512
  4. [4] D. Boffi, F. Brezzi and L. Gastaldi. On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comp. 69(2000) 141-158. Zbl0938.65126MR1642801
  5. [5] D. Braess, Finite Elemente Theorie, schnelle Loser und Anwendungen in der Elastizitatstheorie. Springer Verlag, Berlin, Heidelberg, New York (1997). Zbl0870.65097
  6. [6] J.H. Bramble and J.E. Pasciak, A preconditioning technique for indefinite Systems resulting from mixed approximation of elliptic problems. Math. Comp. 50 (1988) 1-17. Zbl0643.65017MR917816
  7. [7] F. Brezzi, (1974). On the existence, uniqueness and approximation of the saddle-point problems arismg from Lagrange multipliers. Numer. Math. 20 (1974) 179 192. Zbl0338.90047
  8. [8] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer Series in Comp. Math. 15 Springer-Verlag New York (1991). Zbl0788.73002MR1115205
  9. [9] E. V. Chizhonkov, Application of the Cossera spectrum to the optimization of a method for solving the Stokes Problem. Russ. J. Numer. Anal. Math. Model 9 (1994) 191-199. Zbl0821.76019MR1285107
  10. [10] M. Crouzeix, Étude d'une méthode de linéarisation Résolution des équations de Stokes stationaires. Application aux équations des Navier - Stokes stationaires, Cahiers de l'IRIA (1974) 139-244. 
  11. [11] C.M. Dafermos, Some remarks on Korn's inequality. Z Angew. Math. Phys. 19 (1968) 913-920. Zbl0169.55904MR239797
  12. [12] V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations. Springer-Verlag, Berlin (1986). Zbl0585.65077MR851383
  13. [13] P. Grisvard, Elliptic problems in nonsmooth domains. Pitman, Boston (1985). Zbl0695.35060MR775683
  14. [14] M. Gunsburger, Finite element methods for viscous incompressible flows. A guide to the theory, practice and algorithms. Academic Press, London (1989). MR1017032
  15. [15] C.O. Horgan and L.E. Payne, On mequahties of Korn, Friednchs and Babuska-Aziz. Arch. Ration. Mech. Anal. 40 (1971) 384-402. Zbl0223.73011
  16. [16] G. M. Kobelkov, On equivalent norms. in L2 Anal. Math. No 3 (1977) 177-186. Zbl0358.46022
  17. [17] U. Langer and W. Queck, On the convergence factor of Uzawa's algorithm. J. Comp. Appl. Math. 15 (1986) 191-202. Zbl0601.76021MR846936
  18. [18] S.G. Mikhlin, The spectrum of an operator pencil of the elasticity theory. Uspekhi Mat Nauk 28 (1973) 43-82, English translation in Russian Math. Surveys, 28. Zbl0291.35065
  19. [19] M. A. Olshanskii, Stokes problem with model boundary conditions. Sbornik Mathematics 188 (1997) 603-620. Zbl0886.35110MR1462031
  20. [20] M.A. Olshanskii and E.V. Chizhonkov, On the optimal constant in the inf-sup condition for rectangle. Matematicheskie Zametki 67 (2000) 387-396. Zbl0979.76070MR1779472
  21. [21] B.N. Parlett, The Symmetrical Eigenvalue Problem Prentice-Hall, Englewood Chffs, New Jersey (1980). Zbl0431.65017MR570116
  22. [22] R. Rannacher and S. Turek, A simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differential Equation 8 (1992) 97-111. Zbl0742.76051MR1148797
  23. [23] D. Silvester and A. Wathen, Fast iterative solution of stabilized Stokes Systems part II. Using block preconditioners. SIAMJ. Numer. Anal. 31 (1994) 1352-1367. Zbl0810.76044MR1293519
  24. [24] M. Schafer and S. Turek, Benchmark computations of laminar flow around cylinder, in Flow Simulation with High-Performance Computers II, E. H. Hirschel Ed, Notes on Numerical Fluid Mechanics, 52, Vieweg (1996) 547-566. Zbl0874.76070
  25. [25] G. Strang and G.I. Fix, An analysis of the finite element methods Prentice-Hall, New-York (1973). Zbl0356.65096MR443377
  26. [26] S. Turek, Efficient solvers for incompressible flow problems. An algorithmic approach in view of computational aspects. LNCSE 6, Springer, Heidelberg (1999). Zbl0930.76002MR1691839
  27. [27] S. Turek and Chr. Becker, FEATFLOW Finite element software for the incompressible Navier-Stokes equations. User Manual, Release 1 1 Univ of Heidelberg (1998) (http //www featflow de). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.