Embedding and a priori wavelet-adaptivity for Dirichlet problems
- Volume: 34, Issue: 6, page 1189-1202
- ISSN: 0764-583X
Access Full Article
topHow to cite
topRieder, Andreas. "Embedding and a priori wavelet-adaptivity for Dirichlet problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.6 (2000): 1189-1202. <http://eudml.org/doc/194033>.
@article{Rieder2000,
author = {Rieder, Andreas},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {domain embedding method; Galerkin method; Dirichlet problem; error estimates; adaptivity; compactly supported wavelets; fictitious domain method; numerical experiments},
language = {eng},
number = {6},
pages = {1189-1202},
publisher = {Dunod},
title = {Embedding and a priori wavelet-adaptivity for Dirichlet problems},
url = {http://eudml.org/doc/194033},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Rieder, Andreas
TI - Embedding and a priori wavelet-adaptivity for Dirichlet problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 6
SP - 1189
EP - 1202
LA - eng
KW - domain embedding method; Galerkin method; Dirichlet problem; error estimates; adaptivity; compactly supported wavelets; fictitious domain method; numerical experiments
UR - http://eudml.org/doc/194033
ER -
References
top- [1] A. Barinka, T. Barsch, P. Charton, A. Cohen, S. Dahlke, W. Dahmen and K. Urban, Adaptive wavelet schemes for elliptic problems: implementation and numerical experiments. Tech. Report 173, Institut für Geometrie und Praktische Mathematik, RWTH Aachen, 52056 Aachen, Germany (1999). Zbl1016.65090
- [2] G. Beylkin, R. Coifman and V. Rokhlin, Fast wavelet transforms and numerical algorithms I. Comm. Pure Appl. Math. 44 (1991) 141-183. Zbl0722.65022MR1085827
- [3] J.H. Bramble and S.R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7 (1970) 112-124. Zbl0201.07803MR263214
- [4] W. Cai and W. Zhang, An adaptive spline wavelet ADI(SW-ADI) method for two-dimensional reaction diffusion equations. J. Comput. Phys. 139 (1998) 92-126. Zbl0905.65103MR1611650
- [5] C. Canuto, A. Tabacco and K. Urban, The wavelet element method, part I: construction and analysis. Appl. Comput. Harmon. Anal 6 (1999) 1-52. Zbl0949.42024MR1664902
- [6] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Stud. Math. Appl. 4, North-Holland, Amsterdam (1978). Zbl0383.65058MR520174
- [7] A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet methods for elliptic operator equations - convergence rates. Math. Comp. posted on May 23, 2000, PII S0025-5718(00)01252-7 (to appear in print). MR1803124
- [8] A. Cohen, I. Daubechies and J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl Math. 45 (1992) 485-560. Zbl0776.42020MR1162365
- [9] S. Dahlke, W. Dahmen, R. Hochmuth and R. Schneider, Stable multiscale bases and local error estimation for elliptic problems. Appl. Numer. Math. 23 (1997) 21-48. Zbl0872.65098MR1438079
- [10] S. Dahlke, V. Latour and K. Gröchenig, Biorthogonal box spline wavelet bases, in Surface Fitting and Multiresolution Meihods, A.L. Méhauté, C. Rabut and L.L. Schumaker Eds., Vanderbilt University Press (1997) 83-92. Zbl0946.65149MR1660007
- [11] W. Dahmen, Stability of multiscale transformations. J. Fourier Anal. Appl. 2 (1996) 341-362. Zbl0919.46006MR1395769
- [12] W. Dahmen, Wavelet and multiscale methods for operator equations. Acta Numer. 6 (1997) 55-228. Zbl0884.65106MR1489256
- [13] W. Dahmen, A. Kurdila and P. Oswald Eds., Multiscale Wavelet Methods for Partial Differential Equations. Wavelet Anal. Appl. 6, Academic Press, San Diego (1997). MR1474995
- [14] W. Dahmen, S. Prössdorf and R. Schneider, Wavelet approximation methods for pseudodifferential equations. II Matrix compression and fast solution. Adv. Comput. Math. 1 (1993) 259-335. Zbl0826.65093MR1242378
- [15] W. Dahmen and R. Schneider, Composite wavelet bases for operator equations. Math. Comp. 68 (1999) 1533-1567. Zbl0932.65148MR1648379
- [16] W. Dahmen and R. Stevenson, Element-by-element construction of wavelets satisfying stability and moment conditions. SIAM J. Numer. Anal 37 (1999) 319-352. Zbl0942.65130MR1742747
- [17] I. Daubechies, Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41 (1988) 906-966. Zbl0644.42026MR951745
- [18] I. Daubechies, Ten Lectures on Wavelets. CBMS-NSF Ser. in Appl. Math. 61, SIAM Publications, Philadelphia (1992). Zbl0776.42018MR1162107
- [19] J. Fröhlich and K. Schneider, An adaptive wavelet-Galerkin algorithm for one- and two-dimensional flame computations. Eur. J. Mech. B Fluids 11 (1994) 439-471. Zbl0814.76068MR1298062
- [20] J. Fröhlich and K. Schneider, An adaptive wavelet-vaguelette algorithm for the solution of nonlinear PDEs. J. Comput. Phys. 130 (1997) 174-190. Zbl0868.65067MR1433931
- [21] R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer Ser. Comput. Phys., Springer-Verlag, New York (1984). Zbl0536.65054MR737005
- [22] R. Glowinski, Finite element methods for the numerical simulation of incompressible viscous flow: Introduction to the control of the Navier-Stokes equations, in Vortex Dynamics and Vortex Methods, C.R. Anderson and C. Greengard Eds., Lectures in Appl Math. 28, Providence, AMS (1991) 219-301. Zbl0751.76046MR1146474
- [23] R. Glowinski, T.-W. Pan and J. Périaux, A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Engrg. 111 (1994) 283-303. Zbl0845.73078MR1259864
- [24] R. Glowinski, T.-W. Pan and J. Périaux, A Lagrange multiplier/fictitious domain method for the Dirichlet problem - generalizations to some flow problems. Japan J. Indust. Appl. Math. 12 (1995) 87-108. Zbl0835.76047MR1320642
- [25] R. Glowinski, T.-W. Pan and J. Périaux, Fictitious domain methods for the simulation of Stokes flow past a moving disk, in Computational Fluid Dynamics '96, J.A. Desideri, C. Hirsh, P. LeTallec, M. Pandolfi and J. Périaux Eds., Chichester, Wiley (1996) 64-70.
- [26] W. Hackbusch, Elliptic Differential Equations: Theory and Numerical Treatment. Springer Ser. Comput. Math. 18, Springer-Verlag, Heidelberg (1992). Zbl0755.35021MR1197118
- [27] S. Jaffard, Wavelet methods for fast resolution of elliptic problems. SIAM J. Numer. Anal 29 (1992) 965-986. Zbl0761.65083MR1173180
- [28] S. Jaffard and Y. Meyer, Bases d'ondelettes dans des ouverts de Rn. J. Math. Pures Appl. 68 (1992) 95-108. Zbl0704.46009MR985955
- [29] A.K. Louis, P. Maass and A. Rieder, Wavelets: Theory and Applications. Pure Appl. Math., Wiley, Chichester (1997). Zbl0897.42019MR1681147
- [30] Y. Meyer, Ondelettes et Opérateurs I: Ondelettes. Actualités Mathématiques, Hermann, Paris (1990). English version: Wavelets and Operators, Cambridge University Press (1992). Zbl0694.41037MR1085487
- [31] P. Oswald, Multilevel solvers for elliptic problems on domains, in Dahmen et al. [13] 3-58. MR1474996
- [32] A. Rieder, On embedding techniques for 2nd-order elliptic problems, in Computational Science for the 2lst Century, M.-O. Bristeau, G. Etgen, W. Fitzgibbon, J.L. Lions, J. Périaux and M.F. Wheeler Eds., Wiley, Chichester (1997) 179-188. Zbl0911.65111
- [33] A. Rieder, , A domain embedding method for Dirichlet problems in arbitrary space dimension. RAIRO Modél. Math. Anal. Numér. 32 (1998) 405-431. Zbl0913.65099MR1636364
- [34] E.M. Stein, Singular Integrais and Differentiability Properties of Functions. Princeton Math. Ser. 22, Princeton University Press, Princeton (1970). Zbl0207.13501MR290095
- [35] J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge, UK (1987). Zbl0623.35006MR895589
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.