Some new results in multiphase geometrical optics

Olof Runborg

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 6, page 1203-1231
  • ISSN: 0764-583X

How to cite

top

Runborg, Olof. "Some new results in multiphase geometrical optics." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.6 (2000): 1203-1231. <http://eudml.org/doc/194034>.

@article{Runborg2000,
author = {Runborg, Olof},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {multivalued travel times; eikonal equation; moment equations; finite difference methods; nonstrictly hyperbolic system; geometrical optics; scalar wave equation; kinetic transport equation; phase space; multiphase solution; nonlinear conservation laws},
language = {eng},
number = {6},
pages = {1203-1231},
publisher = {Dunod},
title = {Some new results in multiphase geometrical optics},
url = {http://eudml.org/doc/194034},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Runborg, Olof
TI - Some new results in multiphase geometrical optics
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 6
SP - 1203
EP - 1231
LA - eng
KW - multivalued travel times; eikonal equation; moment equations; finite difference methods; nonstrictly hyperbolic system; geometrical optics; scalar wave equation; kinetic transport equation; phase space; multiphase solution; nonlinear conservation laws
UR - http://eudml.org/doc/194034
ER -

References

top
  1. [1] R. Abgrall and J.-D. Benamou, Big ray tracing and eikonal solver on unstructured grids: Application to the computation of a multivalued traveltime field in the Marmousi model. Geophysics 64 (1999) 230-239. 
  2. [2] J.-D. Benamou, Big ray tracing : Multivalued travel time field computation using viscosity solutions of the eikonal equation. J. Comput Phys. 128 (1996) 463-474. Zbl0860.65052
  3. [3] J.-D. Benamou, Direct solution of multivalued phase space solutions for Hamilton-Jacobi equations. Comm. Pure Appl. Math. 52 (1999) 1443-1475. Zbl0935.35032MR1702708
  4. [4] J.-D. Benamou, F. Castella, T. Katsaounis and B. Perthame, High frequency limit of the Helmholtz equation. Research report DMA-99-25, Département de Mathématiques et Applications, École Normale Supérieure, Paris (1999). Zbl1113.35334MR1813168
  5. [5] F. Bouchut, On zero pressure gas dynamics, in Advances in kinetic theory and Computing, Ser. Adv. Math. Appl. Sci. 22, World Sci. Publishing, River Edge, NJ (1994) 171-190. Zbl0863.76068MR1323183
  6. [6] F. Bouchut and F. James, Équations de transport unidimensionnelles à coefficients discontinus. C. R. Acad. Sci. Paris Sér. I Math. 320 (1995) 1097-1102. Zbl0829.35139MR1332618
  7. [7] F. Bouchut and F. James, Duality solutions for pressureless gases, monotone scalar conservation laws and uniqueness. Comm. Partial Differential Equations 24 (1999) 2173-2189. Zbl0937.35098MR1720754
  8. [8] Y. Brenier and L. Corrias, A kinetic formulation for multibranch entropy solutions of scalar conservation laws. Ann. Inst. H. Poincaré 15 (1998) 169-190. Zbl0893.35068MR1614638
  9. [9] Y. Brenier and E. Grenier, Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35 (1998) 2317-2328. Zbl0924.35080MR1655848
  10. [10] F. Castella, O. Runborg and B. Perthame, High frequency limit of the Helmholtz equation II : Source on a general smooth manifold. Research report, Département de Mathématiques et Applications, École Normale Supérieure, Paris (2000). Zbl1290.35262
  11. [11] M. Crandall and P. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math., Soc. 277 (1983) 1-42. Zbl0599.35024MR690039
  12. [12] W. E, Yu. G. Rykov and Ya. G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for Systems of conservation laws arising in adhesion particle dynamics. Comm. Math. Phys. 177 (1996) 349-380. Zbl0852.35097MR1384139
  13. [13] B. Engquist, E. Fatemi and S. Osher, Numerical solution of the high frequency asymptotic expansion for the scalar wave equation. J. Comput. Phys. 120 (1995) 145-155. Zbl0836.65099MR1345031
  14. [14] B. Engquist and O. Runborg, Multiphase computations in geometrical optics. J. Comput. Appl. Math. 74 (1996) 175-192. Zbl0947.78001MR1430373
  15. [15] B. Engquist and O. Runborg, Multiphase computations in geometricai opties, in Hyperbolic Problems : Theory, Numerics, Applications, M. Fey and R. Jeltsch Eds., Internat. Ser. Numer. Math. 129, ETH Zentrum, Zurich, Switzerland (1998). Zbl0963.78004
  16. [16] P. Gérard, P. A. Markowich, N. J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms. Comm. Pure Appl. Math. 50 (1997) 323-379. Zbl0881.35099MR1438151
  17. [17] L. Gosse and F. James, Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients. Math. Comp. 69 (2000) 987-1015. Zbl0949.65094MR1670896
  18. [18] H. Grad, On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2 (1949) 331-407. Zbl0037.13104MR33674
  19. [19] E. Grenier, Existence globale pour le système des gaz sans pression. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 171-174. Zbl0837.35088MR1345441
  20. [20] G.-S. Jiang and E. Tadmor, Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19 (1998) 1892-1917. Zbl0914.65095MR1638064
  21. [21] J. Keller, Geometrical theory of diffraction. J. Opt Soc. Amer. 52 (1962) 116-130. Zbl0092.20604MR135064
  22. [22] R. G. Kouyoumjian and P. H. Pathak, A uniform theory of diffraction for an edge in a perfectly conducting surface. Proc. IEEE 62 (1974) 1448-1461. 
  23. [23] Yu. A. Kravtsov, On a modification of the geometrical optics method. Izv. Vyssh. Uchebn. Zaved. Radiofiz. 7 (1964) 664-673. 
  24. [24] R. J. LeVeque, Numerical Methods for Conservation Laws. Birkhäuser (1992). Zbl0847.65053MR1153252
  25. [25] C. D. Levermore, Moment closure hierarchies for kinetic théories. J. Stat Phys. 83 (1996) 1021-1065. Zbl1081.82619MR1392419
  26. [26] P.-L. Lions and T. Paul, Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9 (1993) 553-618. Zbl0801.35117MR1251718
  27. [27] D. Ludwig, Uniform asymptotic expansions at a caustic. Comm. Pure Appl. Math. 19 (1966) 215-250. Zbl0163.13703MR196254
  28. [28] S. Osher and C.-W. Shu, High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28 (1991) 907-922. Zbl0736.65066MR1111446
  29. [29] F. Poupaud and C.-W. Shu, Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients. Comm. Partial Differential Equations 22 (1997) 337-358. Zbl0882.35026MR1434148
  30. [30] O. Runborg, Multiscale and Multiphase Methods for Wave Propagation. Ph.D. thesis, Department of Numerical Analysis and Computing Science, KTH, Stockholm (1998). 
  31. [31] W. W. Symes, A slowness matching finite difference method for traveltimes beyond transmission caustics. Preprint, Dept. of Computational and Applied Mathematics, Rice University (1996). 
  32. [32] L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 193-230. Zbl0774.35008MR1069518
  33. [33] J. van Trier and W. W. Symes, Upwind finite-difference calculation of traveltimes. Geophysics 56 (1991) 812-821. 
  34. [34] J. Vidale, Finite-difference calculation of traveltimes. Bull. Seismol. Soc. Amer. 78 (1988) 2062-2076. 
  35. [35] G. B. Whitham, Linear and Nonlinear Waves. John Wiley & Sons (1974). Zbl0373.76001MR483954
  36. [36] Y. Zheng, Systems of conservation laws with incomplete sets of eigenvectors everywhere, in Advances in Nonlinear Partial Differential Equations and Related Areas, World Sci. Publishing, River Edge, NJ (1998) 399-426. Zbl0929.35089MR1690841

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.