One-dimensional kinetic models of granular flows
- Volume: 34, Issue: 6, page 1277-1291
- ISSN: 0764-583X
Access Full Article
topHow to cite
topToscani, Giuseppe. "One-dimensional kinetic models of granular flows." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.6 (2000): 1277-1291. <http://eudml.org/doc/194037>.
@article{Toscani2000,
author = {Toscani, Giuseppe},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {granular flows; one-dimensional kinetic model; Boltzmann equation; dissipative collisions; variable coefficient of restitution; quasi-elastic limit; nonlinear friction},
language = {eng},
number = {6},
pages = {1277-1291},
publisher = {Dunod},
title = {One-dimensional kinetic models of granular flows},
url = {http://eudml.org/doc/194037},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Toscani, Giuseppe
TI - One-dimensional kinetic models of granular flows
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 6
SP - 1277
EP - 1291
LA - eng
KW - granular flows; one-dimensional kinetic model; Boltzmann equation; dissipative collisions; variable coefficient of restitution; quasi-elastic limit; nonlinear friction
UR - http://eudml.org/doc/194037
ER -
References
top- [1] R. Alexandre and C. Villani, On the Boltzmann equation for long range interactions and the Landau approximation in plasma physics. Preprint DMA, École Normale Supérieure (1999).
- [2] L. Arkeryd, Intermolecular forces of infinite range and the Boltzmann equation. Arch. Rational Mech. Anal. 77 (1981) 11-21. Zbl0547.76085MR630119
- [3] G. I. Barenblatt, Scaling, Self-similarity, and Intermediate Asymptotics. Cambridge Univ. Press, New York (1996). Zbl0907.76002MR1426127
- [4] D. Benedetto, E. Caglioti and M. Pulvirenti, A kinetic equation for granular media. RAIRO Modél. Math. Anal. Numér. 31 (1997) 615-641. Zbl0888.73006MR1471181
- [5] D. Benedetto, E. Caglioti and M. Pulvirenti, Erratum : A kinetic equation for granular media [RAIRO Modél. Math. Anal. Numér. 31 (1997) 615-641]. ESAIM : M2AN 33 (1999) 439-441. Zbl0888.73006MR1471181
- [6] C. Bizon, J. B. Shattuck, M. D. Swift, W. D. Mc Cormick and H. L. Swinney, Pattern in 2D vertically oscillated granular layers : simulation and experiments. Phys. Rev. Lett. 80 (1998) 57-60.
- [7] A. V. Bobylev, J. A. Carillo and I. Gamba, On some properties of kinetic and hydrodynamics equations for inelastic interactions. J. Statist. Phys. 98 (2000) 743-773. Zbl1056.76071MR1749231
- [8] C. Cercignani, R. Illner and M. Pulvirenti, The mathematical theory of dilute gases. Springer Ser. Appl. Math. Sci. 106, Springer-Verlag, New York (1994). Zbl0813.76001MR1307620
- [9] L. Desvillettes, About the regularizing properties of the non-cut-off Kac equation. Comm. Math. Phys. 168 (1995) 417-440. Zbl0827.76081MR1324404
- [10] Y. Du, H. Li and L. P. Kadanoff, Breakdown of hydrodynamics in a one-dimensional system of inelastic particles. Phys. Rev. Lett. 74 (1995) 1268-1271.
- [11] D. Goldman, M. D. Shattuck, C. Bizon, W. D. McCormick, J. B. Swift and H. L. Swinney, Absence of inelastic collapse in a realistic three ball model. Phys. Rev. E 57 (1998) 4831-4833.
- [12] I. Goldhirsch, Scales and kinetics of granular flows. Chaos 9 (1999) 659-672. Zbl1055.76569
- [13] M. Kac, Probability and related topics in the physical sciences. New York (1959). Zbl0087.33003MR102849
- [14] L. Kantorovich, On translation of mass (in Russian). Dokl. AN SSSR 37 (1942) 227-229.
- [15] L. Landau, Die kinetische Gleichung für den Fall Coulombscher Wechselwirkung. Phys. Z. Sowjet. 10 (1936) 154. Trad.: The transport equation in the case of Coulomb interactions, in Collected papers of L.D. Landau, D. ter Haar Ed., Pergamon Press, Oxford (1981) 163-170. Zbl0015.38202
- [16] S. McNamara and W. R. Young, Inelastic collapse and clumping in a one-dimensional granular medium. Phys. Fluids A 4 (1992) 496-504.
- [17] S. McNamara and W. R. Young, Kinetics of a one-dimensional granular medium in the quasi-elastic limit. Phys. Fluids A 5 (1993) 34-45. MR1196416
- [18] G. Naldi, L. Pareschi and G. Toscani, Spectral methods for a singular Boltzmann equation for granular flows and numerical quasi elastic limit. Preprint (2000). Zbl1046.76034
- [19] G. Toscani, The grazing collision asymptotic of the non cut-off Kac equation. RAIRO Modél. Math. Anal. Numér. 32 (1998) 763-772. Zbl0912.76081MR1652617
- [20] I. Vaida, Theory of statistical Inference and Information. Kluwer Academic Publishers, Dordrecht (1989). Zbl0711.62002
- [21] L. N. Vasershtein, Markov processes on countable product space describing large systems of automata (in Russian). Problemy Peredachi Informatsii 5 (1969) 64-73. Zbl0273.60054MR314115
- [22] C. Villani, Contribution à l'étude mathématique des équations de Boltzmann et de Landau en théorie cinétique des gaz et des plasmas. Ph. D. thesis, Univ. Paris-Dauphine (1998).
- [23] C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Rational Mech. Anal. 143 (1998) 273-307. Zbl0912.45011MR1650006
- [24] C. Villani, Contribution à l'étude mathématique des collisions en théorie cinétique. Ceremade, Paris IX-Dauphine, January 24 (2000).
- [25] V. M. Zolotarev, Probability Metrics. Theory Probab. Appl. 28 (1983) 278-302. Zbl0533.60025
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.