On blow-up of solution for Euler equations
Eric Behr; Jindřich Nečas; Hongyou Wu
- Volume: 35, Issue: 2, page 229-238
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBehr, Eric, Nečas, Jindřich, and Wu, Hongyou. "On blow-up of solution for Euler equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.2 (2001): 229-238. <http://eudml.org/doc/194048>.
@article{Behr2001,
abstract = {We present numerical evidence for the blow-up of solution for the Euler equations. Our approximate solutions are Taylor polynomials in the time variable of an exact solution, and we believe that in terms of the exact solution, the blow-up will be rigorously proved.},
author = {Behr, Eric, Nečas, Jindřich, Wu, Hongyou},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Euler equations; blow-up of solution; approximate solutions; Taylor polynomials},
language = {eng},
number = {2},
pages = {229-238},
publisher = {EDP-Sciences},
title = {On blow-up of solution for Euler equations},
url = {http://eudml.org/doc/194048},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Behr, Eric
AU - Nečas, Jindřich
AU - Wu, Hongyou
TI - On blow-up of solution for Euler equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 2
SP - 229
EP - 238
AB - We present numerical evidence for the blow-up of solution for the Euler equations. Our approximate solutions are Taylor polynomials in the time variable of an exact solution, and we believe that in terms of the exact solution, the blow-up will be rigorously proved.
LA - eng
KW - Euler equations; blow-up of solution; approximate solutions; Taylor polynomials
UR - http://eudml.org/doc/194048
ER -
References
top- [1] H. Bellout, J. Nečas and K.R. Rajagopal, On the existence and uniqueness of flows of multipolar fluids of grade and their stability. Internat. J. Engrg. Sci. 37 (1999) 75–96. Zbl1210.76011
- [2] J.-M. Delort, Estimations fines pour des opérateurs pseudo-différentiels analytiques sur un ouvert à bord de application aux equations d’Euler. Comm. Partial Differential Equations 10 (1985) 1465–1525. Zbl0594.35118
- [3] R. Grauer and T. Sideris, Numerical computation of three dimensional incompressible ideal fluids with swirl. Phys. Rev. Lett. 67 (1991) 3511.
- [4] R. Grauer and T. Sideris, Finite time singularities in ideal fluids with swirl. Phys. D 88 (1995) 116–132. Zbl0899.76286
- [5] E. Hille and R.S. Phillips, Functional analysis and semi-Groups. Amer. Math. Soc., Providence, R.I. (1957). Zbl0078.10004MR89373
- [6] R. Kerr, Evidence for a singularity of the three-dimensional incompressible Euler equations. Phys. Fluids A5 (1993) 1725–1746. Zbl0800.76083
- [7] J. Leray, Sur le mouvement d’un liquide visqueux remplissant l’espace. Acta Math. 63 (1934) 193–248. JFM60.0726.05
- [8] P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 1. Incompressible models. Oxford University Press, New York (1996). Zbl0866.76002MR1422251
- [9] J. Málek, J. Nečas, M. Pokorný and M. Schonbek, On possible singular solutions to the Navier-Stokes equations. Math. Nachr. 199 (1999) 97–114. Zbl0922.35126
- [10] J. Nečas, Theory of multipolar fluids. Problems and methods in mathematical physics (Chemnitz, 1993) 111–119. Teubner, Stuttgart, Teubner-Texte Math. 134 (1994). Zbl0815.76009
- [11] J. Nečas, M. Růžička and V. Šverák, Sur une remarque de J. Leray concernant la construction de solutions singulières des équations de Navier-Stokes. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 245–249. Zbl0859.35091
- [12] J. Nečas, M. Růžička and V. Šverák, On Leray’s self-similar solutions of the Navier-Stokes equations. Acta Math. 176 (1996) 283–294. Zbl0884.35115
- [13] A. Pumir and E. Siggia, Collapsing solutions to the 3-D Euler equations. Phys. Fluids A2 (1990) 220–241. Zbl0696.76070
- [14] A. Pumir and E. Siggia, Development of singular solutions to the axisymmetric Euler equations. Phys. Fluids A4 (1992) 1472–1491. Zbl0825.76121
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.