On blow-up of solution for Euler equations

Eric Behr; Jindřich Nečas; Hongyou Wu

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2001)

  • Volume: 35, Issue: 2, page 229-238
  • ISSN: 0764-583X

Abstract

top
We present numerical evidence for the blow-up of solution for the Euler equations. Our approximate solutions are Taylor polynomials in the time variable of an exact solution, and we believe that in terms of the exact solution, the blow-up will be rigorously proved.

How to cite

top

Behr, Eric, Nečas, Jindřich, and Wu, Hongyou. "On blow-up of solution for Euler equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.2 (2001): 229-238. <http://eudml.org/doc/194048>.

@article{Behr2001,
abstract = {We present numerical evidence for the blow-up of solution for the Euler equations. Our approximate solutions are Taylor polynomials in the time variable of an exact solution, and we believe that in terms of the exact solution, the blow-up will be rigorously proved.},
author = {Behr, Eric, Nečas, Jindřich, Wu, Hongyou},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Euler equations; blow-up of solution; approximate solutions; Taylor polynomials},
language = {eng},
number = {2},
pages = {229-238},
publisher = {EDP-Sciences},
title = {On blow-up of solution for Euler equations},
url = {http://eudml.org/doc/194048},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Behr, Eric
AU - Nečas, Jindřich
AU - Wu, Hongyou
TI - On blow-up of solution for Euler equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 2
SP - 229
EP - 238
AB - We present numerical evidence for the blow-up of solution for the Euler equations. Our approximate solutions are Taylor polynomials in the time variable of an exact solution, and we believe that in terms of the exact solution, the blow-up will be rigorously proved.
LA - eng
KW - Euler equations; blow-up of solution; approximate solutions; Taylor polynomials
UR - http://eudml.org/doc/194048
ER -

References

top
  1. [1] H. Bellout, J. Nečas and K.R. Rajagopal, On the existence and uniqueness of flows of multipolar fluids of grade 3 and their stability. Internat. J. Engrg. Sci. 37 (1999) 75–96. Zbl1210.76011
  2. [2] J.-M. Delort, Estimations fines pour des opérateurs pseudo-différentiels analytiques sur un ouvert à bord de n application aux equations d’Euler. Comm. Partial Differential Equations 10 (1985) 1465–1525. Zbl0594.35118
  3. [3] R. Grauer and T. Sideris, Numerical computation of three dimensional incompressible ideal fluids with swirl. Phys. Rev. Lett. 67 (1991) 3511. 
  4. [4] R. Grauer and T. Sideris, Finite time singularities in ideal fluids with swirl. Phys. D 88 (1995) 116–132. Zbl0899.76286
  5. [5] E. Hille and R.S. Phillips, Functional analysis and semi-Groups. Amer. Math. Soc., Providence, R.I. (1957). Zbl0078.10004MR89373
  6. [6] R. Kerr, Evidence for a singularity of the three-dimensional incompressible Euler equations. Phys. Fluids A5 (1993) 1725–1746. Zbl0800.76083
  7. [7] J. Leray, Sur le mouvement d’un liquide visqueux remplissant l’espace. Acta Math. 63 (1934) 193–248. JFM60.0726.05
  8. [8] P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 1. Incompressible models. Oxford University Press, New York (1996). Zbl0866.76002MR1422251
  9. [9] J. Málek, J. Nečas, M. Pokorný and M. Schonbek, On possible singular solutions to the Navier-Stokes equations. Math. Nachr. 199 (1999) 97–114. Zbl0922.35126
  10. [10] J. Nečas, Theory of multipolar fluids. Problems and methods in mathematical physics (Chemnitz, 1993) 111–119. Teubner, Stuttgart, Teubner-Texte Math. 134 (1994). Zbl0815.76009
  11. [11] J. Nečas, M. Růžička and V. Šverák, Sur une remarque de J. Leray concernant la construction de solutions singulières des équations de Navier-Stokes. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 245–249. Zbl0859.35091
  12. [12] J. Nečas, M. Růžička and V. Šverák, On Leray’s self-similar solutions of the Navier-Stokes equations. Acta Math. 176 (1996) 283–294. Zbl0884.35115
  13. [13] A. Pumir and E. Siggia, Collapsing solutions to the 3-D Euler equations. Phys. Fluids A2 (1990) 220–241. Zbl0696.76070
  14. [14] A. Pumir and E. Siggia, Development of singular solutions to the axisymmetric Euler equations. Phys. Fluids A4 (1992) 1472–1491. Zbl0825.76121

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.