On the discretization in time of parabolic stochastic partial differential equations
- Volume: 35, Issue: 6, page 1055-1078
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topPrintems, Jacques. "On the discretization in time of parabolic stochastic partial differential equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.6 (2001): 1055-1078. <http://eudml.org/doc/194086>.
@article{Printems2001,
abstract = {We first generalize, in an abstract framework, results on the order of convergence of a semi-discretization in time by an implicit Euler scheme of a stochastic parabolic equation. In this part, all the coefficients are globally Lipchitz. The case when the nonlinearity is only locally Lipchitz is then treated. For the sake of simplicity, we restrict our attention to the Burgers equation. We are not able in this case to compute a pathwise order of the approximation, we introduce the weaker notion of order in probability and generalize in that context the results of the globally Lipschitz case.},
author = {Printems, Jacques},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {stochastic partial differential equations; semi-discretized scheme for stochastic partial differential equations; Euler scheme; stochastic partial differential equation; semi-discretization},
language = {eng},
number = {6},
pages = {1055-1078},
publisher = {EDP-Sciences},
title = {On the discretization in time of parabolic stochastic partial differential equations},
url = {http://eudml.org/doc/194086},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Printems, Jacques
TI - On the discretization in time of parabolic stochastic partial differential equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 6
SP - 1055
EP - 1078
AB - We first generalize, in an abstract framework, results on the order of convergence of a semi-discretization in time by an implicit Euler scheme of a stochastic parabolic equation. In this part, all the coefficients are globally Lipchitz. The case when the nonlinearity is only locally Lipchitz is then treated. For the sake of simplicity, we restrict our attention to the Burgers equation. We are not able in this case to compute a pathwise order of the approximation, we introduce the weaker notion of order in probability and generalize in that context the results of the globally Lipschitz case.
LA - eng
KW - stochastic partial differential equations; semi-discretized scheme for stochastic partial differential equations; Euler scheme; stochastic partial differential equation; semi-discretization
UR - http://eudml.org/doc/194086
ER -
References
top- [1] A. Bensoussan and R. Temam, Équations stochastiques du type Navier-Stoke. J. Funct. Anal. 13 (1973) 195–222. Zbl0265.60094
- [2] J.H. Bramble, A.H. Schatz, V. Thomée and L.B. Wahlbin, Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations. SIAM J. Numer. Anal. 14 (1977) 218–241. Zbl0364.65084
- [3] C. Cardon-Weber, Autour d’équations aux dérivées partielles stochastiques à dérives non-Lipschitziennes. Thèse, Université Paris VI, Paris (2000).
- [4] M. Crouzeix and V. Thomée, On the discretization in time of semilinear parabolic equations with nonsmooth initial data. Math. Comput. 49 (1987) 359–377. Zbl0632.65097
- [5] G. Da Prato and A. Debussche, Stochastic Cahn-Hilliard equation. Nonlinear Anal., Theory Methods. Appl. 26 (1996) 241–263. Zbl0838.60056
- [6] G. Da Prato, A. Debussche and R. Temam, Stochastic Burgers’ equation. Nonlinear Differ. Equ. Appl. 1 (1994) 389–402. Zbl0824.35112
- [7] G. Da Prato and D. Gatarek, Stochastic Burgers equation with correlated noise. Stochastics Stochastics Rep. 52 (1995) 29–41. Zbl0853.35138
- [8] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, in Encyclopedia of Mathematics and its Application. Cambridge University Press, Cambridge (1992). Zbl0761.60052MR1207136
- [9] F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Relat. Fields 102 (1995) 367-391. Zbl0831.60072MR1339739
- [10] I. Gyöngy, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I. Potential Anal. 9 (1998) 1–25. Zbl0915.60069
- [11] I. Gyöngy, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II. Potential Anal. 11 (1999) 1–37. Zbl0944.60074
- [12] I. Gyöngy and D. Nualart, Implicit scheme for stochastic parabolic partial differential equations driven by space-time white noise. Potential Anal. 7 (1997) 725–757. Zbl0893.60033
- [13] I. Gyöngy, Existence and uniqueness results for semilinear stochastic partial differential equations. Stoch. Process Appl. 73 (1998) 271–299. Zbl0942.60058
- [14] C. Johnson, S. Larsson, V. Thomée and L.B. Wahlbin, Error estimates for spatially discrete approximations of semilinear parabolic equations with nonsmooth initial data. Math. Comput. 49 (1987) 331–357. Zbl0634.65110
- [15] P.E. Kloeden and E. Platten, Numerical solution of stochastic differential equations, in Applications of Mathematics 23, Springer-Verlag, Berlin, Heidelberg, New York (1992). Zbl0752.60043MR1214374
- [16] N. Krylov and B.L. Rozovski, Stochastic Evolution equations. J. Sov. Math. 16 (1981) 1233–1277. Zbl0462.60060
- [17] M.-N. Le Roux, Semidiscretization in Time for Parabolic Problems. Math. Comput. 33 (1979) 919–931. Zbl0417.65049
- [18] G.N. Milstein, Approximate integration of stochastic differential equations. Theor. Prob. Appl. 19 (1974) 557–562. G.N. Milstein, Weak approximation of solutions of systems of stochastic differential equations. Theor. Prob. Appl. 30 (1985) 750–766. Zbl0314.60039
- [19] E. Pardoux, Équations aux dérivées partielles stochastiques non linéaires monotones. Étude de solutions fortes de type Ito. Thèse, Université Paris XI, Orsay (1975).
- [20] B.L. Rozozski, Stochastic evolution equations. Linear theory and application to nonlinear filtering. Kluwer, Dordrecht, The Netherlands (1990).
- [21] T. Shardlow, Numerical methods for stochastic parabolic PDEs. Numer. Funct. Anal. Optimization 20 (1999) 121–145. Zbl0919.65100
- [22] D. Talay, Efficient numerical schemes for the approximation of expectation of functionals of the solutions of an stochastic differential equation and applications, in Lecture Notes in Control and Information Science 61, Springer, London, (1984) 294–313. Zbl0542.93077
- [23] D. Talay, Discrétisation d’une équation différentielle stochastique et calcul approché d’espérance de fonctionnelles de la solution. RAIRO Modél. Math. Anal. Numér. 20 (1986) 141–179. Zbl0662.65129
- [24] M. Viot, Solutions faibles aux équations aux dérivées partielles stochastiques non linéaires. Thèse, Université Pierre et Marie Curie, Paris (1976).
- [25] J. B. Walsh, An introduction to stochastic partial differential equations, in Lectures Notes in Mathematics 1180 (1986) 265–437. Zbl0608.60060
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.