Variational Analysis for the Black and Scholes Equation with Stochastic Volatility
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 36, Issue: 3, page 373-395
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Y. Achdou and B. Franchi (in preparation).
- H. Brezis, Analyse Fonctionnelle, Théorie et Applications. Masson (1983).
- T. Cazenave and A. Haraux, An introduction to semilinear evolution equations. The Clarendon Press Oxford University Press, New York (1998). Translated from the 1990 French original by Y. Martel and revised by the authors.
- J. Douglas and T.F. Russell, Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite element methods or finite difference method. SIAM J. Numer. Anal.19 (1982) 871-885.
- J.-P. Fouque, G. Papanicolaou and K. Ronnie Sircar. Derivatives in financial markets with stochastic volatility. Cambridge University Press, Cambridge (2000).
- B. Franchi, R. Serapioni and F. Serra Cassano. Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields. Houston J. Math.22 (1996) 859-890.
- B. Franchi and M.C. Tesi, A finite element approximation for a class of degenerate elliptic equations. Math. Comp.69 (2000) 41-63.
- K.O. Friedrichs, The identity of weak and strong extensions of differential operators. Trans. Amer. Math. Soc.55 (1944) 132-151.
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. I and II. Dunod, Paris (1968).
- A. Pazy, Semi-groups of linear operators and applications to partial differential equations. Appl. Math. Sci.. 44, Springer Verlag (1983).
- O. Pironneau and F. Hecht, FREEFEM. www.ann.jussieu.fr
- O. Pironneau and F. Hecht, Mesh adaption for the Black and Scholes equations. East-West J. Numer. Math.8 (2000) 25-35.
- M.H. Protter and H.F. Weinberger, Maximum principles in differential equations. Springer-Verlag, New York (1984). Corrected reprint of the 1967 original.
- E. Stein and J. Stein, Stock price distributions with stochastic volatility: an analytic approach. The review of financial studies4 (1991) 727-752.
- H.A Van Der Vorst, Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonlinear systems. SIAM J. Sci. Statist. Comput.13 (1992) 631-644.
- P. Willmott, J. Dewynne and J. Howison, Option pricing: mathematical models and computations. Oxford financial press (1993).