# Globalization of SQP-Methods in Control of the Instationary Navier-Stokes Equations

Michael Hintermüller; Michael Hinze

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

- Volume: 36, Issue: 4, page 725-746
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topHintermüller, Michael, and Hinze, Michael. "Globalization of SQP-Methods in Control of the Instationary Navier-Stokes Equations." ESAIM: Mathematical Modelling and Numerical Analysis 36.4 (2010): 725-746. <http://eudml.org/doc/194123>.

@article{Hintermüller2010,

abstract = {
A numerically inexpensive globalization strategy of sequential quadratic programming
methods (SQP-methods) for control of the instationary Navier Stokes equations is investigated.
Based on the proper functional analytic setting a convergence analysis for the globalized method
is given. It is argued that the a priori formidable SQP-step can be decomposed into linear primal
and linear adjoint systems, which is amenable for existing CFL-software. A report on a numerical
test demonstrates the feasibility of the approach.
},

author = {Hintermüller, Michael, Hinze, Michael},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {Globalized SQP-method; line search; Navier Stokes equations; optimal control.; globalized SQP-method; Navier-Stokes equations; optimal control},

language = {eng},

month = {3},

number = {4},

pages = {725-746},

publisher = {EDP Sciences},

title = {Globalization of SQP-Methods in Control of the Instationary Navier-Stokes Equations},

url = {http://eudml.org/doc/194123},

volume = {36},

year = {2010},

}

TY - JOUR

AU - Hintermüller, Michael

AU - Hinze, Michael

TI - Globalization of SQP-Methods in Control of the Instationary Navier-Stokes Equations

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2010/3//

PB - EDP Sciences

VL - 36

IS - 4

SP - 725

EP - 746

AB -
A numerically inexpensive globalization strategy of sequential quadratic programming
methods (SQP-methods) for control of the instationary Navier Stokes equations is investigated.
Based on the proper functional analytic setting a convergence analysis for the globalized method
is given. It is argued that the a priori formidable SQP-step can be decomposed into linear primal
and linear adjoint systems, which is amenable for existing CFL-software. A report on a numerical
test demonstrates the feasibility of the approach.

LA - eng

KW - Globalized SQP-method; line search; Navier Stokes equations; optimal control.; globalized SQP-method; Navier-Stokes equations; optimal control

UR - http://eudml.org/doc/194123

ER -

## References

top- F. Abergel and R. Temam, On some Control Problems in Fluid Mechanics. Theoret. Comput. Fluid Dyn.1 (1990) 303-325. Zbl0708.76106
- E. Bänsch, An adaptive Finite-Element-Strategy for the three-dimensional time-dependent Navier-Stokes Equations. J. Comput. Math.36 (1991) 3-28. Zbl0727.76078
- D. Bertsekas, Nonlinear Programming. Athena Scientific, Belmont, Massachusetts (1995).
- J.F. Bonnans et al., Optimisation Numérique. Math. Appl. 27, Springer-Verlag, Berlin (1997).
- O. Ghattas and J.J. Bark, Optimal control of two-and three-dimensional incompressible Navier-Stokes Flows. J. Comput. Physics136 (1997) 231-244. Zbl0893.76067
- P.E. Gill et al., Practical Optimization. Academic Press, San Diego, California (1981). Zbl0503.90062
- R. Glowinski, Finite element methods for the numerical simulation of incompressible viscous flow. Introduction to the Control of the Navier-Stokes Equations. Lect. Appl. Math. 28 (1991). Zbl0751.76046
- W.A. Gruver and E. Sachs, Algorithmic Methods in Optimal Control. Res. Notes Math. 47, Pitman, London (1980). Zbl0456.49001
- M. Heinkenschloss, Formulation and analysis of a sequential quadratic programming method for the optimal Dirichlet boundary control of Navier-Stokes flow, in Optimal Control: Theory, Algorithms, and Applications, Kluwer Academic Publishers B.V. (1998) 178-203. Zbl0924.76021
- M. Hintermüller, On a globalized augmented Lagrangian-SQP algorithm for nonlinear optimal control problems with box constraints, in Fast solution methods for discretized optimization problems, K.-H. Hoffmann, R.H.W. Hoppe and V. Schulz Eds., Internat. Ser. Numer. Math. 138 (2001) 139-153. Zbl0999.49020
- M. Hinze, Optimal and instantaneous control of the instationary Navier-Stokes equations, Habilitationsschrift (1999). Fachbereich Mathematik, Technische Universität Berlin, download see . URIhttp://www.math.tu-dresden.de/~hinze/publications.html
- M. Hinze and K. Kunisch, Second order methods for optimal control of time-dependent fluid flow. SIAM J. Optim. Control40 (2001) 925-946. Zbl1012.49026
- P. Hood and C. Taylor, A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. & Fluids1 (1973) 73-100. Zbl0328.76020
- C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations. SIAM (1995). Zbl0832.65046
- F.S. Kupfer, An infinite-dimensional convergence theory for reduced SQP-methods in Hilbert space. SIAM J. Optim. 6 (1996). Zbl0846.65027
- E. Polak, Optimization. Appl. Math. Sci. 124, Springer-Verlag, New York (1997).
- M.J.D. Powell, Variable metric methods for constrained optimization, in Mathematical Programming, The State of the Art, Eds. Bachem, Grötschel, Korte, Bonn (1982).
- W.C. Rheinboldt, Methods for Solving Systems of Nonlinear Equations. CBMS-NSF Regional Conference Series in Applied Mathematics 70, SIAM, Philadelphia (1998). Zbl0906.65051
- K. Schittkowski, On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function. Math. Operationsforschung u. Statist, Ser. Optim. 14 (1983) 197-216. Zbl0523.90075
- R. Temam, Navier-Stokes Equations. North-Holland (1979). Zbl0426.35003

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.