C++ Tools to construct our user-level language

Frédéric Hecht

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 36, Issue: 5, page 809-836
  • ISSN: 0764-583X

Abstract

top
The aim of this paper is to present how to make a dedicaded computed language polymorphic and multi type, in C++ to solve partial differential equations with the finite element method. The driving idea is to make the language as close as possible to the mathematical notation.

How to cite

top

Hecht, Frédéric. "C++ Tools to construct our user-level language." ESAIM: Mathematical Modelling and Numerical Analysis 36.5 (2010): 809-836. <http://eudml.org/doc/194128>.

@article{Hecht2010,
abstract = { The aim of this paper is to present how to make a dedicaded computed language polymorphic and multi type, in C++ to solve partial differential equations with the finite element method. The driving idea is to make the language as close as possible to the mathematical notation. },
author = {Hecht, Frédéric},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Finite element method; grammars; languages.; finite element method; languages},
language = {eng},
month = {3},
number = {5},
pages = {809-836},
publisher = {EDP Sciences},
title = {C++ Tools to construct our user-level language},
url = {http://eudml.org/doc/194128},
volume = {36},
year = {2010},
}

TY - JOUR
AU - Hecht, Frédéric
TI - C++ Tools to construct our user-level language
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 36
IS - 5
SP - 809
EP - 836
AB - The aim of this paper is to present how to make a dedicaded computed language polymorphic and multi type, in C++ to solve partial differential equations with the finite element method. The driving idea is to make the language as close as possible to the mathematical notation.
LA - eng
KW - Finite element method; grammars; languages.; finite element method; languages
UR - http://eudml.org/doc/194128
ER -

References

top
  1. D. Bernardi, F. Hecht, K. Ohtsuka and O. Pironneau, freefem+ documentation.  URIhttp://www-rocq.inria.fr/Frederic.Hecht/freefem+.htm
  2. P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland (1991) 17-351.  
  3. C. Donnelly and R. Stallman, Bison documentation.  URIhttp://www.gnu.org/bison
  4. P. Frey and P.L. George, Automatic triangulation. Wiley (1996).  
  5. F. Hecht, The mesh adapting software: bamg. INRIA (1998).  URIhttp://www-rocq.inria.fr/gamma/cdrom/www/bamg/eng.htm
  6. F. Hecht and O. Pironneau, freefem++ Manual.  URIhttp://www-rocq.inria.fr/Frederic.Hecht/freefem++.htm
  7. P. Joly and M. Vidrascu, Quelques méthodes classique de résolution de systèmes linèaires. Collection didactique, INRIA (1994).  
  8. J.L. Lions and O. Pironneau, Domain decomposition methods for CAD. C. R. Acad. Sci. Paris Sér. I Math.328 (1999) 73-80.  
  9. B. Lucquin and O. Pironneau, Scientific Computing for Engineers. Wiley (1998).  
  10. O. Pironneau, Méthodes des éléments finis pour les fluides. Masson (1988).  
  11. N. Wirth, Algorthims + Data Structures = Programs. Prentice Hall (1976).  

NotesEmbed ?

top

You must be logged in to post comments.