GO++: A modular Lagrangian/Eulerian software for Hamilton Jacobi equations of geometric optics type
Jean-David Benamou; Philippe Hoch
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 36, Issue: 5, page 883-905
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- R. Abgrall and J.-D. Benamou, Big ray tracing and eikonal solver on unstructured grids: Application to the computation of a multi-valued travel-time field in the marmousi model. Geophysics64 (1999) 230-239.
- V.I. Arnol'd, Mathematical methods of Classical Mechanics. Springer-Verlag (1978).
- G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi. Springer-Verlag (1994).
- J.-D. Benamou, Big ray tracing: Multi-valued travel time field computation using viscosity solutions of the eikonal equation. J. Comput. Phys.128 (1996) 463-474.
- J.-D. Benamou, Direct solution of multi-valued phase-space solutions for Hamilton-Jacobi equations. Comm. Pure Appl. Math. 52 (1999).
- J.-D. Benamou and P. Hoch, GO++: A modular Lagrangian/Eulerian software for Hamilton-Jacobi equations of Geometric Optics type. INRIA Tech. Report RR.
- Y. Brenier and L. Corrias, A kinetic formulation for multi-branch entropy solutions of scalar conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998) 169-190.
- M.G. Crandall and P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc.277 (1983) 1-42.
- J.J. Duistermaat, Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm. Pure Appl. Math.27 (1974) 207-281.
- B. Engquist, E. Fatemi and S. Osher, Numerical resolution of the high frequency asymptotic expansion of the scalar wave equation. J. Comput. Phys.120 (1995) 145-155.
- B. Engquist and O. Runborg, Multi-phase computation in geometrical optics. Tech report, Nada KTH (1995).
- S. Izumiya, The theory of Legendrian unfoldings and first order differential equations. Proc. Roy. Soc. Edinburgh Sect. A123 (1993) 517-532.
- G. Lambare, P. Lucio and A. Hanyga, Two dimensional multi-valued traveltime and amplitude maps by uniform sampling of a ray field. Geophys. J. Int125 (1996) 584-598.
- B. Merryman S. Ruuth and S.J. Osher, A fixed grid method for capturing the motion of self-intersecting interfaces and related PDEs. Preprint (1999).
- S.J. Osher and C.W. Shu, High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal.83 (1989) 32-78.
- J. Steinhoff, M. Fang and L. Wang, A new eulerian method for the computation of propagating short acoustic and electromagnetic pulses. J. Comput. Phys.157 (2000) 683-706.
- W. Symes, A slowness matching algorithm for multiple traveltimes. TRIP report (1996).
- V. Vinje, E. Iversen and H. Gjoystdal, Traveltime and amplitude estimation using wavefront construction. Geophysics58 (1993) 1157-1166.
- L.C. Young, Lecture on the Calculus of Variation and Optimal Control Theory. Saunders, Philadelphia (1969).