Identification of cracks with non linear impedances
Mohamed Jaoua; Serge Nicaise; Luc Paquet
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 37, Issue: 2, page 241-257
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topJaoua, Mohamed, Nicaise, Serge, and Paquet, Luc. "Identification of cracks with non linear impedances." ESAIM: Mathematical Modelling and Numerical Analysis 37.2 (2010): 241-257. <http://eudml.org/doc/194161>.
@article{Jaoua2010,
abstract = {
We consider the inverse problem of
determining a crack submitted to a non linear impedance law. Identifiability and local Lipschitz stability results are proved for both the crack and the impedance.
},
author = {Jaoua, Mohamed, Nicaise, Serge, Paquet, Luc},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Inverse problems; cracks.; inverse problems; cracks; nonlinear impedance law; local Lipschitz stability; identifiability},
language = {eng},
month = {3},
number = {2},
pages = {241-257},
publisher = {EDP Sciences},
title = {Identification of cracks with non linear impedances},
url = {http://eudml.org/doc/194161},
volume = {37},
year = {2010},
}
TY - JOUR
AU - Jaoua, Mohamed
AU - Nicaise, Serge
AU - Paquet, Luc
TI - Identification of cracks with non linear impedances
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 37
IS - 2
SP - 241
EP - 257
AB -
We consider the inverse problem of
determining a crack submitted to a non linear impedance law. Identifiability and local Lipschitz stability results are proved for both the crack and the impedance.
LA - eng
KW - Inverse problems; cracks.; inverse problems; cracks; nonlinear impedance law; local Lipschitz stability; identifiability
UR - http://eudml.org/doc/194161
ER -
References
top- G. Alessandrini, Stability for the crack determination problem, in Inverse problems in Mathematical Physics, L. Päivaärinta and E. Somersalo Eds., Springer-Verlag, Berlin (1993) 1-8.
- G. Alessandrini, E. Beretta and S. Vessella, Determining linear cracks by boundary measurements: Lipschitz stability. SIAM J. Math. Anal.27 (1996) 361-375.
- G. Alessandrini and A. Diaz Valenzuela, Unique determination of multiple cracks by two measurements. SIAM J. Control Optim.34 (1996) 913-921.
- G. Alessandrini and A. DiBenedetto, Determining 2-dimensional cracks in 3-dimensional bodies: uniqueness and stability. Indiana Univ. Math. J.46 (1997) 1-82.
- S. Andrieux and A. Ben Abda, Identification of planar cracks by overdetermined boundary data: inversion formulae. Inverse Problems12 (1996) 553-563.
- S. Andrieux, A. Ben Abda and M. Jaoua, On the inverse emerging plane crack problem. Math. Methods Appl. Sci.21 (1998) 895-907.
- A. Ben Abda, H. Ben Ameur and M. Jaoua, A semi-explicit algorithm for the reconstruction of 3D planar cracks. Inverse Problems15 (1999) 67-78.
- R. Bellout and A. Friedman, Identification problems in potential theory. Arch. Rational Mech. Anal.101 (1988) 143-160.
- M. Bonnet, Boundary Integral Equation Methods for Solids and Fluids. Wiley, New York (1995).
- K. Bryan and M. Vogelius, A uniqueness result concerning the identification of a collection of cracks from finitely many electrostatic boundary measurements. SIAM J. Math. Anal.23 (1992) 950-958.
- M. Dauge, Elliptic boundary value problems in corner domains. Smoothness and asymptotics of solutions. Springer Verlag, Berlin, Lecture Notes in Math.1341 (1988).
- C. Dellacherie and P.-A. Meyer, Probabilité et potentiel. Hermann (1975).
- P. Destuynder and M. Jaoua, Sur une interprétation mathématique de l'intégrale de Rice en théorie de la rupture fragile. Math. Methods Appl. Sci.3 (1981) 70-87.
- R. Felfel, Étude de l'identifiabilité et de la stabilité d'une fissure présentant une résistivité de contact. DEA de Mathématiques Appliquées, ENIT, Tunis (1997).
- A. Friedman and M. Vogelius, Determining cracks by boundary measurements. Indiana Univ. Math. J.38 (1989) 527-556.
- P. Grisvard, Elliptic problems in nonsmooth domains. Pitman, Boston (1985).
- V.G. Maz'ya and B.A. Plamenevsky, On the coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points. Amer. Math. Soc. Transl. Ser. 2123 (1984) 57-88.
- F. Murat and J. Simon, Quelques résultats sur le contrôle par un domaine géométrique. Preprint, Université de Paris VI (1974).
- E.P. Stephan, Boundary integral equations for mixed boundary value problems, screen and transmission problems in . Habilitationsschrift, TH Darmstadt, Germany (1984).
- E.P. Stephan, Boundary integral equations for screen problems in . Integral Equations Operator Theory10 (1987) 236-257.
- V.S. Vladimirov, Equations of Mathematical Physics. Marcel Dekker, New York (1971).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.