On the modeling of the transport of particles in turbulent flows
Thierry Goudon; Frédéric Poupaud
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 38, Issue: 4, page 673-690
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topGoudon, Thierry, and Poupaud, Frédéric. "On the modeling of the transport of particles in turbulent flows." ESAIM: Mathematical Modelling and Numerical Analysis 38.4 (2010): 673-690. <http://eudml.org/doc/194233>.
@article{Goudon2010,
abstract = {
We investigate different asymptotic regimes
for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.
},
author = {Goudon, Thierry, Poupaud, Frédéric},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Fluid-particles interaction; hydrodynamic limits; turbulence effects.; convection-diffusion effective equation; Vlasov-Fokker-Planck equation},
language = {eng},
month = {3},
number = {4},
pages = {673-690},
publisher = {EDP Sciences},
title = {On the modeling of the transport of particles in turbulent flows},
url = {http://eudml.org/doc/194233},
volume = {38},
year = {2010},
}
TY - JOUR
AU - Goudon, Thierry
AU - Poupaud, Frédéric
TI - On the modeling of the transport of particles in turbulent flows
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 38
IS - 4
SP - 673
EP - 690
AB -
We investigate different asymptotic regimes
for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.
LA - eng
KW - Fluid-particles interaction; hydrodynamic limits; turbulence effects.; convection-diffusion effective equation; Vlasov-Fokker-Planck equation
UR - http://eudml.org/doc/194233
ER -
References
top- P. Berthonnaud, Limites fluides pour des modèles cinétiques de brouillards de gouttes monodispersés. C. R. Acad. Sci.331 (2000) 651–654.
- M. Brassart, Limite semi-classique de transformées de Wigner dans des milieux périodiques ou aléatoires. Thèse Université de Nice-Sophia Antipolis (Novembre 2002).
- J.R. Brock and G.M. Hidy, The dynamics of aerocolloidal systems. Pergamon Press (1970).
- R. Caflisch and G. Papanicolaou, Dynamic theory of suspensions with Brownian effects. SIAM J. Appl. Math.43 (1983) 885–906.
- J.F. Clouet and K. Domelevo, Solutions of a kinetic stochastic equation modeling a spray in a turbulent gas flow. Math. Models Methods Appl. Sci.7 (1997) 239–263.
- L. Desvillettes, About the modeling of complex flows by gas-particles methods, Proceedings of the workshop “Trends in Numerical and Physical Modeling for Industrial Multiphase Flows”, Cargèse, France (2000).
- K. Domelevo and M.-H. Vignal, Limites visqueuses pour des systèmes de type Fokker-Planck-Burgers unidimensionnels. C. R. Acad. Sci.332 (2001) 863–868.
- K. Domelevo and P. Villedieu, Work in preparation. Personal communication.
- S. Gavrilyuck and V. Teshukhov, Kinetic model for the motion of compressible bubbles in a perfect fluid. Eur. J. Mech. B/Fluids21 (2002) 469–491.
- F. Golse, in From kinetic to macroscopic models in Kinetic equations and asymptotic theory, B. Perthame and L. Desvillettes Eds., Gauthier-Villars, Ser. Appl. Math.4 (2000) 41–121.
- T. Goudon, Asymptotic problems for a kinetic model of two-phase flow. Proc. Royal Soc. Edimburgh131 (2001) 1371–1384.
- T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodymamic limit for the Vlasov-Navier-Stokes system: Light particles regime. Preprint.
- T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodymamic limit for the Vlasov-Navier-Stokes system: Fine particles regime. Preprint.
- K. Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations. Japan J. Ind. Appl. Math.15 (1998) 51–74.
- H. Herrero, B. Lucquin-Desreux and B. Perthame, On the motion of dispersed balls in a potential flow: a kinetic description of the added mass effect. SIAM J. Appl. Math.60 (1999) 61–83.
- P.-E. Jabin, Large time concentrations for solutions to kinetic equations with energy dissipation. Comm. Partial Differential Equations25 (2000) 541–557.
- P.-E. Jabin, Macroscopic limit of Vlasov type equations with friction. Ann. IHP Anal. Non Linéaire17 (2000) 651–672.
- P.-E. Jabin and B. Perthame, in Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid in Modeling in applied sciences, a kinetic theory approach, N. Bellomo and M. Pulvirenti Eds., Birkhäuser (2000) 111–147.
- P. Kramer and A. Majda, Simplified models for turbulent diffusion: Theory, numerical modeling, and physical phenomena. Physics Reports314 (1999) 237–574.
- R. Kubo, Stochastic Liouville equations. J. Math. Phys.4 (1963) 174–183.
- G. Loeper and A. Vasseur, Electric turbulence in a plasma subject to a strong magnetic field. Preprint.
- P.J. O'Rourke, Statistical properties and numerical implementation of a model for droplets dispersion in a turbulent gas. J. Comp. Phys.83 (1989) 345–360.
- F. Poupaud and A. Vasseur, Classical and quantum transport in random media. J. Math. Pures Appl.82 (2003) 711–748.
- G. Russo and P. Smereka, Kinetic theory for bubbly flows I, II. SIAM J. Appl. Math.56 (1996) 327–371.
- C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of mathematical fluid mechanics, S. Friedlander and D. Serre Eds., North-Holland (2002).
- F.A. Williams, Combustion theory. Benjamin Cummings Publ., 2nd edn. (1985).
- L.I. Zaichik, A statistical model of particle transport and heat transfer in turbulent shear flows. Phys. Fluids11 (1999) 1521–1534.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.