# A semi-smooth Newton method for solving elliptic equations with gradient constraints

ESAIM: Mathematical Modelling and Numerical Analysis (2008)

- Volume: 43, Issue: 2, page 209-238
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topGriesse, Roland, and Kunisch, Karl. "A semi-smooth Newton method for solving elliptic equations with gradient constraints." ESAIM: Mathematical Modelling and Numerical Analysis 43.2 (2008): 209-238. <http://eudml.org/doc/194449>.

@article{Griesse2008,

abstract = {
Semi-smooth Newton methods for elliptic equations with gradient constraints are investigated.
The one- and multi-dimensional cases are treated separately.
Numerical examples illustrate the approach and as well as structural features of the solution.
},

author = {Griesse, Roland, Kunisch, Karl},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {Gradient constraints; active set strategy; regularization; semi-smooth Newton method; primal-dual active set method.; gradient constraints; primal-dual active set method; elliptic equations; numerical examples},

language = {eng},

month = {12},

number = {2},

pages = {209-238},

publisher = {EDP Sciences},

title = {A semi-smooth Newton method for solving elliptic equations with gradient constraints},

url = {http://eudml.org/doc/194449},

volume = {43},

year = {2008},

}

TY - JOUR

AU - Griesse, Roland

AU - Kunisch, Karl

TI - A semi-smooth Newton method for solving elliptic equations with gradient constraints

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2008/12//

PB - EDP Sciences

VL - 43

IS - 2

SP - 209

EP - 238

AB -
Semi-smooth Newton methods for elliptic equations with gradient constraints are investigated.
The one- and multi-dimensional cases are treated separately.
Numerical examples illustrate the approach and as well as structural features of the solution.

LA - eng

KW - Gradient constraints; active set strategy; regularization; semi-smooth Newton method; primal-dual active set method.; gradient constraints; primal-dual active set method; elliptic equations; numerical examples

UR - http://eudml.org/doc/194449

ER -

## References

top- J.-M. Bony, Principe du maximum dans les espaces de Sobolev. C. R. Acad. Sci. Paris Sér. A-B265 (1967) 333–336. Zbl0164.16803
- A. Brooks and T. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng.32 (1982) 99–259. Zbl0497.76041
- X. Chen, Superlinear convergence and smoothing quasi-Newton methods for nonsmooth equations. J. Comput. Appl. Math.80 (1997) 105–126. Zbl0881.65042
- M. Delfour and J.-P. Zolésio, Shapes and Geometries. Analysis, Differential Calculus, and Optimization. Philadelphia (2001).
- L.C. Evans, A second order elliptic equation with gradient constraint. Comm. Partial Differ. Equ.4 (1979) 555–572. Zbl0448.35036
- D. Gilbarg and N.S. Trudinger, Elliptic Differential Equations of Second Order. Springer, New York (1977). Zbl0361.35003
- M. Hintermüller and K. Kunisch, Stationary optimal control problems with pointwise state constraints. SIAM J. Optim. (to appear). Zbl1195.49037
- M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim.13 (2002) 865–888. Zbl1080.90074
- H. Ishii and S. Koike, Boundary regularity and uniqueness for an elliptic equation with gradient constraint. Comm. Partial Differ. Equ.8 (1983) 317–346. Zbl0538.35012
- K. Ito and K. Kunisch, The primal-dual active set method for nonlinear optimal control problems with bilateral constraints. SIAM J. Contr. Opt.43 (2004) 357–376. Zbl1077.90051
- C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987). Zbl0628.65098
- K. Kunisch and J. Sass, Trading regions under proportional transaction costs, in Operations Research Proceedings, U.M. Stocker and K.-H. Waldmann Eds., Springer, New York (2007) 563–568. Zbl1209.91149
- O.A. Ladyzhenskaya and N.N. Ural'tseva, Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968).
- S. Shreve and H.M. Soner, Optimal investment and consumption with transaction costs. Ann. Appl. Probab.4 (1994) 609–692. Zbl0813.60051
- K. Stromberg, Introduction to Classical Real Analysis. Wadsworth International, Belmont, California (1981). Zbl0454.26001
- G. Troianiello, Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York (1987). Zbl0655.35002
- M. Wiegner, The C1,1-character of solutions of second order elliptic equations with gradient constraint. Comm. Partial Differ. Equ.6 (1981) 361–371. Zbl0458.35035

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.