Groups in which the prime graph is a tree

Maria Silvia Lucido

Bollettino dell'Unione Matematica Italiana (2002)

  • Volume: 5-B, Issue: 1, page 131-148
  • ISSN: 0392-4041

Abstract

top
The prime graph Γ G of a finite group G is defined as follows: the set of vertices is π G , the set of primes dividing the order of G , and two vertices p , q are joined by an edge (we write p q ) if and only if there exists an element in G of order p q . We study the groups G such that the prime graph Γ G is a tree, proving that, in this case, π G 8 .

How to cite

top

Lucido, Maria Silvia. "Groups in which the prime graph is a tree." Bollettino dell'Unione Matematica Italiana 5-B.1 (2002): 131-148. <http://eudml.org/doc/194591>.

@article{Lucido2002,
abstract = {The prime graph $\Gamma(G)$ of a finite group $G$ is defined as follows: the set of vertices is $\pi(G)$, the set of primes dividing the order of $G$, and two vertices $p$, $q$ are joined by an edge (we write $p\sim q$) if and only if there exists an element in $G$ of order $pq$. We study the groups $G$ such that the prime graph $\Gamma(G)$ is a tree, proving that, in this case, $|\pi (G)|\leq 8$.},
author = {Lucido, Maria Silvia},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {prime graphs; numbers of connected components; sets of element orders; finite groups; solvable groups; diameters; Fitting lengths; almost simple groups},
language = {eng},
month = {2},
number = {1},
pages = {131-148},
publisher = {Unione Matematica Italiana},
title = {Groups in which the prime graph is a tree},
url = {http://eudml.org/doc/194591},
volume = {5-B},
year = {2002},
}

TY - JOUR
AU - Lucido, Maria Silvia
TI - Groups in which the prime graph is a tree
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/2//
PB - Unione Matematica Italiana
VL - 5-B
IS - 1
SP - 131
EP - 148
AB - The prime graph $\Gamma(G)$ of a finite group $G$ is defined as follows: the set of vertices is $\pi(G)$, the set of primes dividing the order of $G$, and two vertices $p$, $q$ are joined by an edge (we write $p\sim q$) if and only if there exists an element in $G$ of order $pq$. We study the groups $G$ such that the prime graph $\Gamma(G)$ is a tree, proving that, in this case, $|\pi (G)|\leq 8$.
LA - eng
KW - prime graphs; numbers of connected components; sets of element orders; finite groups; solvable groups; diameters; Fitting lengths; almost simple groups
UR - http://eudml.org/doc/194591
ER -

References

top
  1. CONWAY, J.- CURTIS, R.- NORTON, S.- PARKER, R.- WILSON, R., Atlas of finite Groups, Clarendon Press, Oxford (1985). Zbl0568.20001MR827219
  2. BURKHARDT, R., Über di Zerlegungszahlen der Suzukigruppen S z q , Journal of Algebra, 59 (1979), 421-433. Zbl0413.20008MR543261
  3. DIXON, J. D., The structure of linear groups, New York (1971). Zbl0232.20079
  4. DIXON, J. D.- MORTIMER, B., Permutation Groups, Springer, Graduate Texts in Mathematics n. 163 (1996). Zbl0951.20001MR1409812
  5. DORNHOFF, L., Group representation Theory, Part A, Dekker, New York (1971). Zbl0227.20002MR347959
  6. FLEISCHMANN, P.- LEMPKEN, W.- TIEP, P. H., Finite p -semiregular groups, Journal of Algebra, 188 (1997), 547-579. Zbl0896.20007MR1435374
  7. GRUENBERG, K. W.- ROGGENKAMP, K. W., Decomposition of the augmentation ideal and relation modules of a finite group, Proc. London Math. Soc., 31 (1975), 149-166. Zbl0313.20004MR374247
  8. KONDRATÉV, A. S., Prime graph components of finite simple groups, Mat. Sb., 180 n. 6 (1989), 787-797 (translated in Math. of the USSR, 67 (1990), 235-247). Zbl0698.20009MR1015040
  9. IIYORI, N.- YAMAKI, H., Prime graph components of the simple groups of Lie type over the field of even characteristic, Journal of Algebra, 155 (1993), 335-343. Zbl0799.20016MR1212233
  10. LUCIDO, M. S., Prime graph components of finite almost simple groups, Rendiconti del Seminario Matematico dell'Università di Padova, 102 (1999), 1-22. Zbl0941.20008MR1739529
  11. LUCIDO, M. S., The diameter of the prime graph of finite groups, Journal of Group Theory, 2 (1999), 157-172. Zbl0921.20020MR1681526
  12. MAZUROV, V. D., The set of orders elements in a finite group, Algebra and Logic, vol. 33, n. 1 (1994), 49-55. Zbl0823.20024MR1287011
  13. PASSMAN, D. S., Permutation groups, W. A. Benjamin, New York (1968). Zbl0179.04405MR237627
  14. ROBINSON, D. R., A course on the theory of groups, Springer-Verlag, Berlin Heidelberg - New York (1982). Zbl0483.20001
  15. WILLIAMS, J. S., Prime graph components of finite groups, Journal of Algebra, 69 (1981), 487-513. Zbl0471.20013MR617092

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.