Groups in which the prime graph is a tree
Bollettino dell'Unione Matematica Italiana (2002)
- Volume: 5-B, Issue: 1, page 131-148
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topLucido, Maria Silvia. "Groups in which the prime graph is a tree." Bollettino dell'Unione Matematica Italiana 5-B.1 (2002): 131-148. <http://eudml.org/doc/194591>.
@article{Lucido2002,
abstract = {The prime graph $\Gamma(G)$ of a finite group $G$ is defined as follows: the set of vertices is $\pi(G)$, the set of primes dividing the order of $G$, and two vertices $p$, $q$ are joined by an edge (we write $p\sim q$) if and only if there exists an element in $G$ of order $pq$. We study the groups $G$ such that the prime graph $\Gamma(G)$ is a tree, proving that, in this case, $|\pi (G)|\leq 8$.},
author = {Lucido, Maria Silvia},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {prime graphs; numbers of connected components; sets of element orders; finite groups; solvable groups; diameters; Fitting lengths; almost simple groups},
language = {eng},
month = {2},
number = {1},
pages = {131-148},
publisher = {Unione Matematica Italiana},
title = {Groups in which the prime graph is a tree},
url = {http://eudml.org/doc/194591},
volume = {5-B},
year = {2002},
}
TY - JOUR
AU - Lucido, Maria Silvia
TI - Groups in which the prime graph is a tree
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/2//
PB - Unione Matematica Italiana
VL - 5-B
IS - 1
SP - 131
EP - 148
AB - The prime graph $\Gamma(G)$ of a finite group $G$ is defined as follows: the set of vertices is $\pi(G)$, the set of primes dividing the order of $G$, and two vertices $p$, $q$ are joined by an edge (we write $p\sim q$) if and only if there exists an element in $G$ of order $pq$. We study the groups $G$ such that the prime graph $\Gamma(G)$ is a tree, proving that, in this case, $|\pi (G)|\leq 8$.
LA - eng
KW - prime graphs; numbers of connected components; sets of element orders; finite groups; solvable groups; diameters; Fitting lengths; almost simple groups
UR - http://eudml.org/doc/194591
ER -
References
top- CONWAY, J.- CURTIS, R.- NORTON, S.- PARKER, R.- WILSON, R., Atlas of finite Groups, Clarendon Press, Oxford (1985). Zbl0568.20001MR827219
- BURKHARDT, R., Über di Zerlegungszahlen der Suzukigruppen , Journal of Algebra, 59 (1979), 421-433. Zbl0413.20008MR543261
- DIXON, J. D., The structure of linear groups, New York (1971). Zbl0232.20079
- DIXON, J. D.- MORTIMER, B., Permutation Groups, Springer, Graduate Texts in Mathematics n. 163 (1996). Zbl0951.20001MR1409812
- DORNHOFF, L., Group representation Theory, Part A, Dekker, New York (1971). Zbl0227.20002MR347959
- FLEISCHMANN, P.- LEMPKEN, W.- TIEP, P. H., Finite -semiregular groups, Journal of Algebra, 188 (1997), 547-579. Zbl0896.20007MR1435374
- GRUENBERG, K. W.- ROGGENKAMP, K. W., Decomposition of the augmentation ideal and relation modules of a finite group, Proc. London Math. Soc., 31 (1975), 149-166. Zbl0313.20004MR374247
- KONDRATÉV, A. S., Prime graph components of finite simple groups, Mat. Sb., 180 n. 6 (1989), 787-797 (translated in Math. of the USSR, 67 (1990), 235-247). Zbl0698.20009MR1015040
- IIYORI, N.- YAMAKI, H., Prime graph components of the simple groups of Lie type over the field of even characteristic, Journal of Algebra, 155 (1993), 335-343. Zbl0799.20016MR1212233
- LUCIDO, M. S., Prime graph components of finite almost simple groups, Rendiconti del Seminario Matematico dell'Università di Padova, 102 (1999), 1-22. Zbl0941.20008MR1739529
- LUCIDO, M. S., The diameter of the prime graph of finite groups, Journal of Group Theory, 2 (1999), 157-172. Zbl0921.20020MR1681526
- MAZUROV, V. D., The set of orders elements in a finite group, Algebra and Logic, vol. 33, n. 1 (1994), 49-55. Zbl0823.20024MR1287011
- PASSMAN, D. S., Permutation groups, W. A. Benjamin, New York (1968). Zbl0179.04405MR237627
- ROBINSON, D. R., A course on the theory of groups, Springer-Verlag, Berlin Heidelberg - New York (1982). Zbl0483.20001
- WILLIAMS, J. S., Prime graph components of finite groups, Journal of Algebra, 69 (1981), 487-513. Zbl0471.20013MR617092
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.