Function approximation of Seidel aberrations by a neural network
Rossella Cancelliere; Mario Gai
Bollettino dell'Unione Matematica Italiana (2004)
- Volume: 7-B, Issue: 3, page 687-696
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCancelliere, Rossella, and Gai, Mario. "Function approximation of Seidel aberrations by a neural network." Bollettino dell'Unione Matematica Italiana 7-B.3 (2004): 687-696. <http://eudml.org/doc/194600>.
@article{Cancelliere2004,
abstract = {This paper deals with the possibility of using a feedforward neural network to test the discrepancies between a real astronomical image and a predefined template. This task can be accomplished thanks to the capability of neural networks to solve a nonlinear approximation problem, i.e. to construct an hypersurface that approximates a given set of scattered data couples. Images are encoded associating each of them with some conveniently chosen statistical moments, evaluated along the $\\{x, y\\}$ axes; in this way a parsimonious method is obtained that allows a really effective approach to Seidel aberration diagnostics.},
author = {Cancelliere, Rossella, Gai, Mario},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {687-696},
publisher = {Unione Matematica Italiana},
title = {Function approximation of Seidel aberrations by a neural network},
url = {http://eudml.org/doc/194600},
volume = {7-B},
year = {2004},
}
TY - JOUR
AU - Cancelliere, Rossella
AU - Gai, Mario
TI - Function approximation of Seidel aberrations by a neural network
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/10//
PB - Unione Matematica Italiana
VL - 7-B
IS - 3
SP - 687
EP - 696
AB - This paper deals with the possibility of using a feedforward neural network to test the discrepancies between a real astronomical image and a predefined template. This task can be accomplished thanks to the capability of neural networks to solve a nonlinear approximation problem, i.e. to construct an hypersurface that approximates a given set of scattered data couples. Images are encoded associating each of them with some conveniently chosen statistical moments, evaluated along the $\{x, y\}$ axes; in this way a parsimonious method is obtained that allows a really effective approach to Seidel aberration diagnostics.
LA - eng
UR - http://eudml.org/doc/194600
ER -
References
top- BORN, M.- WOLF, E., Principles of optics, Pergamon, New York, 1985.
- CANCELLIERE, R.- GAI, M., A Comparative Analysis of Neural Network Performances in Astronomy Imaging, Applied Numerical Mathematics, 45, n. 1 (2003), 87-98. Zbl1019.85001
- CYBENKO, G., approximation by superpositions of a sigmoidal function, Math. Control-Signals Systems, 2 (1989), 303-314. Zbl0679.94019MR1015670
- ELLACOTT, S. W., Aspects of the numerical analysis of neural networks, Acta Numerica, 1994, 145-202. Zbl0807.65007MR1288097
- FUNAHASHI, K. I., On the approximate realization of continuous mappings by neural networks, Neural Networks, 2 (1989), 183-192.
- GAI, M.- CASERTANO, S.- CAROLLO, D.- LATTANZI, M. G., Location estimators for interferometric fringe, Publ. Astron. Soc. Pac., 110 (1998), 848-862.
- GAI, M.- CAROLLO, D.- DELBÓ, M.- LATTANZI, M. G.- MASSONE, G.- BERTINETTO, F.- MANA, G.- CESARE, S., Location accuracy limitations for CCD cameras, A&A, 367 (2001), 362-370.
- HAYKIN, S., Neural Networks, a Comprehensive FoundationIEEE Computer Society Press, 1994. Zbl0828.68103
- HORNIK, K.- STINCHCOMBE, M.- WHITE, H., Multilayer feedforward networks are universal approximators, Neural Networks, 2 (1989), 359-366.
- LOYD-HART, M.- WIZINOWICH, P.- MCLEOD, B.- WITTMAN, D.- COLUCCI, D.- DEKANY, R.- MCCARTHY, D.- ANGEL, J. R. P.- SANDLER, D., First Results of an On-line Adaptive Optics System with Atmospheric Wavefront Sensing by an Artificial Neural Network, ApJ, 390 (1992), L41-44.
- MINSKY, M.- PAPERT, S., Perceptrons, Cambridge, MA:MIT Press, 1969. Zbl0197.43702
- RUMELHART, D.- HINTON, G. E.- WILLIAMS, R. J., Learning internal representation by error propagation. Parallel Distribuited Processing (PDP): Exploration in the Microstructure of Cognition, MIT Press, Cambridge, Massachussetts, 1 (1986), 318-362.
- WIZINOWICH, P.- LOYD-HART, M.- ANGEL, R., Adaptive Optics for Array Telescopes Using Neural Networks Techniques on Transputers, Transputing '91, IOS Press, Washington D.C., 1 (1991), 170-183.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.