On the range of elliptic operators discontinuous at one point
Bollettino dell'Unione Matematica Italiana (2002)
- Volume: 5-B, Issue: 1, page 123-129
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topGiannotti, Cristina. "On the range of elliptic operators discontinuous at one point." Bollettino dell'Unione Matematica Italiana 5-B.1 (2002): 123-129. <http://eudml.org/doc/194662>.
@article{Giannotti2002,
abstract = {Let $L$ be a second order, uniformly elliptic, non variational operator with coefficients which are bounded and measurable in $\mathbb\{R\}^\{d\}$ ($d\geq3$) and continuous in $\mathbb\{R\}^\{d\} \setminus \\{0\\}$. Then, if $\Omega\subset \mathbb\{R\}^\{d\}$ is a bounded domain, we prove that $L(W^\{2, p \}(\Omega))$ is dense in $L^\{p\}(\Omega)$ for any $p\in(1, d/2 ]$.},
author = {Giannotti, Cristina},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {123-129},
publisher = {Unione Matematica Italiana},
title = {On the range of elliptic operators discontinuous at one point},
url = {http://eudml.org/doc/194662},
volume = {5-B},
year = {2002},
}
TY - JOUR
AU - Giannotti, Cristina
TI - On the range of elliptic operators discontinuous at one point
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/2//
PB - Unione Matematica Italiana
VL - 5-B
IS - 1
SP - 123
EP - 129
AB - Let $L$ be a second order, uniformly elliptic, non variational operator with coefficients which are bounded and measurable in $\mathbb{R}^{d}$ ($d\geq3$) and continuous in $\mathbb{R}^{d} \setminus \{0\}$. Then, if $\Omega\subset \mathbb{R}^{d}$ is a bounded domain, we prove that $L(W^{2, p }(\Omega))$ is dense in $L^{p}(\Omega)$ for any $p\in(1, d/2 ]$.
LA - eng
UR - http://eudml.org/doc/194662
ER -
References
top- ARENA, O., On the range of Ural'tseva's Axially symmetric Operator in Sobolev Spaces, Partial Differential Equations (P. Marcellini, G. Talenti, E. Vesentini Eds.) Dekker (1996). Zbl0867.35029
- GILBARG, D.- SERRIN, J., On isolated singularities of solutions of second order elliptic equations, J. Anal. Math., 4 (1955-56), 309-340. Zbl0071.09701MR81416
- GILBARG, D.- TRUDINGER, N. S., Elliptic Partial Differential Equations of Second Order, Springer (1983). Zbl0562.35001MR737190
- LADYZHENSKAYA, O. A.- URAL'TSEVA, N. N., Linear and Quasilinear Elliptic Equations, A.P. (1968). Zbl0164.13002MR244627
- MANSELLI, P., On the range of elliptic, second order, nonvariational operators in Sobolev spaces, Annali Mat. pura e appl., (IV), Vol. CLXXVIII (2000), 67-80. Zbl1096.47518MR1849379
- NEČAS, J., Les Méthodes Directes en Théorie des Équations Elliptiques, MassonParis1967. MR227584
- PUCCI, C., Operatori ellittici estremanti, Annali di Matematica Pura ed Applicata (IV), Vol. LXXII (1966), 141-170. Zbl0154.12402MR208150
- URAL'TSEVA, N. N., Impossibility of bounds for multidimensional elliptic operators with discontinuous coefficients, L.O.M.I., 5 (1967), 250-254. Zbl0186.43006MR226179
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.