On lattice properties of S-permutably embedded subgroups of finite soluble groups
L. M. Ezquerro; M. Gómez-Fernández; X. Soler-Escrivà
Bollettino dell'Unione Matematica Italiana (2005)
- Volume: 8-B, Issue: 2, page 505-517
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topEzquerro, L. M., Gómez-Fernández, M., and Soler-Escrivà, X.. "On lattice properties of S-permutably embedded subgroups of finite soluble groups." Bollettino dell'Unione Matematica Italiana 8-B.2 (2005): 505-517. <http://eudml.org/doc/194694>.
@article{Ezquerro2005,
abstract = {In this paper we prove the following results. Let π be a set of prime numbers and G a finite π-soluble group. Consider U, V ≤ G and $H\in \mathrm \{Hall\}_\{\pi \}(G)$ such that $H\cap V \in \mathrm \{Hall\}_\{\pi \}(V)$ and $1\ne H\cap U\in \mathrm \{Hall\}_\{\pi \}(U)$. Suppose also $H \cap U$ is a Hall π-sub-group of some S-permutable subgroup of G. Then $H\cap U \cap V\in \mathrm \{Hall\}_\{\pi \}(U\cap V)$ and $\langle H\cap U, H\cap V \rangle \in \mathrm \{Hall\}_\{\pi \}(\langle U\cap V\rangle )$. Therefore,the set of all S-permutably embedded subgroups of a soluble group G into which a given Hall system Σ reduces is a sublattice of the lattice of all Σ-permutable subgroups of G. Moreover any two subgroups of this sublattice of coprimeorders permute.},
author = {Ezquerro, L. M., Gómez-Fernández, M., Soler-Escrivà, X.},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {finite -soluble groups; Hall subgroups; -permutable subgroups; permutably embedded subgroups; Hall systems; lattices of subgroups},
language = {eng},
month = {6},
number = {2},
pages = {505-517},
publisher = {Unione Matematica Italiana},
title = {On lattice properties of S-permutably embedded subgroups of finite soluble groups},
url = {http://eudml.org/doc/194694},
volume = {8-B},
year = {2005},
}
TY - JOUR
AU - Ezquerro, L. M.
AU - Gómez-Fernández, M.
AU - Soler-Escrivà, X.
TI - On lattice properties of S-permutably embedded subgroups of finite soluble groups
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/6//
PB - Unione Matematica Italiana
VL - 8-B
IS - 2
SP - 505
EP - 517
AB - In this paper we prove the following results. Let π be a set of prime numbers and G a finite π-soluble group. Consider U, V ≤ G and $H\in \mathrm {Hall}_{\pi }(G)$ such that $H\cap V \in \mathrm {Hall}_{\pi }(V)$ and $1\ne H\cap U\in \mathrm {Hall}_{\pi }(U)$. Suppose also $H \cap U$ is a Hall π-sub-group of some S-permutable subgroup of G. Then $H\cap U \cap V\in \mathrm {Hall}_{\pi }(U\cap V)$ and $\langle H\cap U, H\cap V \rangle \in \mathrm {Hall}_{\pi }(\langle U\cap V\rangle )$. Therefore,the set of all S-permutably embedded subgroups of a soluble group G into which a given Hall system Σ reduces is a sublattice of the lattice of all Σ-permutable subgroups of G. Moreover any two subgroups of this sublattice of coprimeorders permute.
LA - eng
KW - finite -soluble groups; Hall subgroups; -permutable subgroups; permutably embedded subgroups; Hall systems; lattices of subgroups
UR - http://eudml.org/doc/194694
ER -
References
top- ASAAD, M. - HELIEL, A. A., On S-quasinormally embedded subgroups of finite groups, J. Pure App. Algebra, 165, (2001), 129-135. Zbl1011.20019MR1865961
- BALLESTER-BOLINCHES, A., Permutably embedded subgroups of finite soluble groups, Arch. Math., 65 (1995), 1-7. Zbl0823.20020MR1336215
- BALLESTER-BOLINCHES, A. - PEÂREZ-RAMOS, M. D., Permutability in finite soluble groups, Math. Proc. Camb. Phil. Soc., 115 (1993), 393-396. Zbl0817.20016MR1269927
- BALLESTER-BOLINCHES, A. - PEDRAZA-AGUILERA, M. C., Sufficient conditions for supersolubility of finite groups, J. Pure App. Algebra, 127 (1998), 118-134. Zbl0928.20020MR1620696
- BALLESTER-BOLINCHES, A. - EZQUERRO, L. M., On join properties of Hall π-subgroups of finite π-soluble groups, J. Algebra, 204 (1998), 532-548. Zbl0914.20021MR1624479
- DESKINS, W. E., On quasi normal subgroups of finite groups, Math.Z., 82 (1963), 125-132. Zbl0114.02004
- DOERK, K., Eine Bemerkung ber das Reduziern von Hallgruppen in endlichen auflsbaren Gruppen, Arch. Math., 60 (1993), 505-507. Zbl0791.20014MR1216691
- Doerk, K. - HAWKES, T., Finite soluble groups, De Gruyter (Berlin, New York, 1992). Zbl0753.20001MR1169099
- EZQUERRO, L. M., Una caracterización de los subgrupos inmersos normalmente en grupos finitos resolubles, Actas XII Jor. Luso-Esp. Mat. Univ. Braga, 2 (1987), 68-71.
- EZQUERRO, L. M. - SOLER-ESCRIV, X., Some permutability properties of -hypercentrally embedded subgroups of finite groups. Preprint (to appear in J. Algebra), 2002. Zbl1107.20018MR1980698
- FELDMAN, A., An intersection property of Sylow p-subgroups affecting p-length in finite p-solvable groups, J. Algebra, 184 (1996), 251-254. Zbl0856.20014MR1402580
- KEGEL, O. H.,Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), 205-221. Zbl0102.26802MR147527
- SCHMID, P., Subgroups permutable with all Sylow subgroups, J. Algebra, 207 (1998), 285-293. Zbl0910.20015MR1643106
- TOMKINSON, M. J., Prefrattini subgroups and cover-avoidance properties in -groups, Canad. J. Math., 27 (1975), 837-851. Zbl0286.20037MR387411
- WIELANDT, H., Subnormale Untergruppen endlicher Gruppen, Mathematical Works, Vol. I, De Gruyter (Berlin, New York, 1994), 413-479.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.