On lattice properties of S-permutably embedded subgroups of finite soluble groups

L. M. Ezquerro; M. Gómez-Fernández; X. Soler-Escrivà

Bollettino dell'Unione Matematica Italiana (2005)

  • Volume: 8-B, Issue: 2, page 505-517
  • ISSN: 0392-4041

Abstract

top
In this paper we prove the following results. Let π be a set of prime numbers and G a finite π-soluble group. Consider U, V ≤ G and H Hall π ( G ) such that H V Hall π ( V ) and 1 H U Hall π ( U ) . Suppose also H U is a Hall π-sub-group of some S-permutable subgroup of G. Then H U V Hall π ( U V ) and H U , H V Hall π ( U V ) . Therefore,the set of all S-permutably embedded subgroups of a soluble group G into which a given Hall system Σ reduces is a sublattice of the lattice of all Σ-permutable subgroups of G. Moreover any two subgroups of this sublattice of coprimeorders permute.

How to cite

top

Ezquerro, L. M., Gómez-Fernández, M., and Soler-Escrivà, X.. "On lattice properties of S-permutably embedded subgroups of finite soluble groups." Bollettino dell'Unione Matematica Italiana 8-B.2 (2005): 505-517. <http://eudml.org/doc/194694>.

@article{Ezquerro2005,
abstract = {In this paper we prove the following results. Let π be a set of prime numbers and G a finite π-soluble group. Consider U, V ≤ G and $H\in \mathrm \{Hall\}_\{\pi \}(G)$ such that $H\cap V \in \mathrm \{Hall\}_\{\pi \}(V)$ and $1\ne H\cap U\in \mathrm \{Hall\}_\{\pi \}(U)$. Suppose also $H \cap U$ is a Hall π-sub-group of some S-permutable subgroup of G. Then $H\cap U \cap V\in \mathrm \{Hall\}_\{\pi \}(U\cap V)$ and $\langle H\cap U, H\cap V \rangle \in \mathrm \{Hall\}_\{\pi \}(\langle U\cap V\rangle )$. Therefore,the set of all S-permutably embedded subgroups of a soluble group G into which a given Hall system Σ reduces is a sublattice of the lattice of all Σ-permutable subgroups of G. Moreover any two subgroups of this sublattice of coprimeorders permute.},
author = {Ezquerro, L. M., Gómez-Fernández, M., Soler-Escrivà, X.},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {finite -soluble groups; Hall subgroups; -permutable subgroups; permutably embedded subgroups; Hall systems; lattices of subgroups},
language = {eng},
month = {6},
number = {2},
pages = {505-517},
publisher = {Unione Matematica Italiana},
title = {On lattice properties of S-permutably embedded subgroups of finite soluble groups},
url = {http://eudml.org/doc/194694},
volume = {8-B},
year = {2005},
}

TY - JOUR
AU - Ezquerro, L. M.
AU - Gómez-Fernández, M.
AU - Soler-Escrivà, X.
TI - On lattice properties of S-permutably embedded subgroups of finite soluble groups
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/6//
PB - Unione Matematica Italiana
VL - 8-B
IS - 2
SP - 505
EP - 517
AB - In this paper we prove the following results. Let π be a set of prime numbers and G a finite π-soluble group. Consider U, V ≤ G and $H\in \mathrm {Hall}_{\pi }(G)$ such that $H\cap V \in \mathrm {Hall}_{\pi }(V)$ and $1\ne H\cap U\in \mathrm {Hall}_{\pi }(U)$. Suppose also $H \cap U$ is a Hall π-sub-group of some S-permutable subgroup of G. Then $H\cap U \cap V\in \mathrm {Hall}_{\pi }(U\cap V)$ and $\langle H\cap U, H\cap V \rangle \in \mathrm {Hall}_{\pi }(\langle U\cap V\rangle )$. Therefore,the set of all S-permutably embedded subgroups of a soluble group G into which a given Hall system Σ reduces is a sublattice of the lattice of all Σ-permutable subgroups of G. Moreover any two subgroups of this sublattice of coprimeorders permute.
LA - eng
KW - finite -soluble groups; Hall subgroups; -permutable subgroups; permutably embedded subgroups; Hall systems; lattices of subgroups
UR - http://eudml.org/doc/194694
ER -

References

top
  1. ASAAD, M. - HELIEL, A. A., On S-quasinormally embedded subgroups of finite groups, J. Pure App. Algebra, 165, (2001), 129-135. Zbl1011.20019MR1865961
  2. BALLESTER-BOLINCHES, A., Permutably embedded subgroups of finite soluble groups, Arch. Math., 65 (1995), 1-7. Zbl0823.20020MR1336215
  3. BALLESTER-BOLINCHES, A. - PEÂREZ-RAMOS, M. D., Permutability in finite soluble groups, Math. Proc. Camb. Phil. Soc., 115 (1993), 393-396. Zbl0817.20016MR1269927
  4. BALLESTER-BOLINCHES, A. - PEDRAZA-AGUILERA, M. C., Sufficient conditions for supersolubility of finite groups, J. Pure App. Algebra, 127 (1998), 118-134. Zbl0928.20020MR1620696
  5. BALLESTER-BOLINCHES, A. - EZQUERRO, L. M., On join properties of Hall π-subgroups of finite π-soluble groups, J. Algebra, 204 (1998), 532-548. Zbl0914.20021MR1624479
  6. DESKINS, W. E., On quasi normal subgroups of finite groups, Math.Z., 82 (1963), 125-132. Zbl0114.02004
  7. DOERK, K., Eine Bemerkung ber das Reduziern von Hallgruppen in endlichen auflsbaren Gruppen, Arch. Math., 60 (1993), 505-507. Zbl0791.20014MR1216691
  8. Doerk, K. - HAWKES, T., Finite soluble groups, De Gruyter (Berlin, New York, 1992). Zbl0753.20001MR1169099
  9. EZQUERRO, L. M., Una caracterización de los subgrupos inmersos normalmente en grupos finitos resolubles, Actas XII Jor. Luso-Esp. Mat. Univ. Braga, 2 (1987), 68-71. 
  10. EZQUERRO, L. M. - SOLER-ESCRIV, X., Some permutability properties of F -hypercentrally embedded subgroups of finite groups. Preprint (to appear in J. Algebra), 2002. Zbl1107.20018MR1980698
  11. FELDMAN, A., An intersection property of Sylow p-subgroups affecting p-length in finite p-solvable groups, J. Algebra, 184 (1996), 251-254. Zbl0856.20014MR1402580
  12. KEGEL, O. H.,Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), 205-221. Zbl0102.26802MR147527
  13. SCHMID, P., Subgroups permutable with all Sylow subgroups, J. Algebra, 207 (1998), 285-293. Zbl0910.20015MR1643106
  14. TOMKINSON, M. J., Prefrattini subgroups and cover-avoidance properties in U -groups, Canad. J. Math., 27 (1975), 837-851. Zbl0286.20037MR387411
  15. WIELANDT, H., Subnormale Untergruppen endlicher Gruppen, Mathematical Works, Vol. I, De Gruyter (Berlin, New York, 1994), 413-479. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.