On existence of equilibria of set-valued maps
Grzegorz Gabor; Marc Quincampoix
Bollettino dell'Unione Matematica Italiana (2003)
- Volume: 6-B, Issue: 2, page 309-321
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topGabor, Grzegorz, and Quincampoix, Marc. "On existence of equilibria of set-valued maps." Bollettino dell'Unione Matematica Italiana 6-B.2 (2003): 309-321. <http://eudml.org/doc/194712>.
@article{Gabor2003,
abstract = {The present paper is devoted to sufficient conditions for existence of equilibria of Lipschitz multivalued maps in prescribed subsets of finite-dimensional spaces. The main improvement of the present study lies in the fact that we do not suppose any regular assumptions on the boundary of the subset. Our approach is based on behaviour of trajectories to the corresponding differential inclusion.},
author = {Gabor, Grzegorz, Quincampoix, Marc},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {differential inclusions; Marchaud multivalued mappings; existence of equlibria},
language = {eng},
month = {6},
number = {2},
pages = {309-321},
publisher = {Unione Matematica Italiana},
title = {On existence of equilibria of set-valued maps},
url = {http://eudml.org/doc/194712},
volume = {6-B},
year = {2003},
}
TY - JOUR
AU - Gabor, Grzegorz
AU - Quincampoix, Marc
TI - On existence of equilibria of set-valued maps
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/6//
PB - Unione Matematica Italiana
VL - 6-B
IS - 2
SP - 309
EP - 321
AB - The present paper is devoted to sufficient conditions for existence of equilibria of Lipschitz multivalued maps in prescribed subsets of finite-dimensional spaces. The main improvement of the present study lies in the fact that we do not suppose any regular assumptions on the boundary of the subset. Our approach is based on behaviour of trajectories to the corresponding differential inclusion.
LA - eng
KW - differential inclusions; Marchaud multivalued mappings; existence of equlibria
UR - http://eudml.org/doc/194712
ER -
References
top- AUBIN, J.-P.- CELLINA, A., Differential Inclusions, Springer, 1984. Zbl0538.34007MR755330
- AUBIN, J.-P., Viability Theory, Birkhäuser, Boston, 1991. Zbl0755.93003MR1134779
- BEN-EL-MECHAIEKH, H.- KRYSZEWSKI, W., Équilibres dans les ensembles nonconvexes, C. R. Acad. Sci. Paris Sér. I, 320 (1995), 573-576. Zbl0833.54024MR1322339
- BEN-EL-MECHAIEKH, H.- KRYSZEWSKI, W., Equilibria of set-valued maps on nonconvex domains, Trans. Amer. Math. Soc., 349 (1997), 4159-4179. Zbl0887.47040MR1401763
- BONY, J. M., Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Institut Fourier, Grenoble, 19, 1 (1969), 277-304. Zbl0176.09703MR262881
- BROWDER, F., The fixed point theory of multivalued mappings in topological vector spaces, Math. Ann., 177 (1968), 283-301. Zbl0176.45204MR229101
- BROWN, R., The Lefschetz Fized Point Theorem, Scott, Foresman and Comp., Glenview Ill., London1971. Zbl0216.19601MR283793
- CARDALIAGUET, P., Sufficient conditions of nonemptiness of the viability kernel, PhD Thesis, Chapter 8, Université Paris IX Dauphine, 1992. Zbl0761.34016MR1166049
- CARDALIAGUET, P., Conditions suffisantes de non-vacuité du noyau de viabilité, C. R. Acad. Sci., Paris, Ser. I, 314, 11 (1992), 797-800. Zbl0761.34016MR1166049
- CLARKE, F.- LEDYAEV, YU. S.- STERN, R. J., Fixed points and equilibria in nonconvex sets, Nonlinear Analysis, 25 (1995), 145-161. Zbl0840.49010MR1333819
- CLARKE, F.- LEDYAEV, YU. S.- STERN, R. J.- WOLENSKI, P. R., Nonsmooth Analysis and Control Theory, Springer, 1998. Zbl1047.49500MR1488695
- CORNET, B., Paris avec handicaps et théorèmes de surjectivité de correspondances, C. R. Acad. Sc. Paris Sér. A, 281 (1975), 479-482. Zbl0317.90087MR386726
- CORNET, B.- CZARNECKI, M.-O., Existence of (generalized) equilibria: necessary and sufficient conditions, Comm. Appl. Nonlinear Anal., 7 (2000), 21-53. Zbl1108.49301MR1733400
- ĆWISZEWSKI, A.- KRYSZEWSKI, W., Equilibria of set-valued maps: variational approach, Nonlinear Anal. TMA (accepted). Zbl1030.49021
- DUGUNDJI, J., Topology, Allyn and Bacon, Inc., Boston, 1966. Zbl0144.21501MR193606
- EILENBERG, S.- STEENROD, N., Foundations of Algebraic Topology, Princeton Univ. Press, New Jersey, 1952. Zbl0047.41402MR50886
- FAN, K., Fixed point and minimax theorems in locally convex topological spaces, Proc. Nat. Acad. Sci. USA, 38 (1952), 121-126. Zbl0047.35103MR47317
- FAN, K., Some properties of convex sets related to fixed point theorems, Math. Ann., 266 (1984), 519-537. Zbl0515.47029MR735533
- HADDAD, G.- LASRY, J. M., Periodic solutions of functional differential inclusions and fixed points -selectionable correspondances, J. Math. Anal. Appl., 96 (1983), 295-312. Zbl0539.34031MR719317
- K. MISCHAIKOW-M. MROZEK-P. ZGLICZYŃSKI (editors), Conley index theory, Banach Center Publ., 47, PWN, Warszawa, 1999. Zbl0913.00021MR1675402
- MROZEK, M., Periodic and stationary trajectories of flows and ordinary differential equations, Zesz. Nauk. Uniw. Jagiellon. 860, Acta Math., 27 (1988), 29-37. Zbl0684.34046MR982424
- PLASKACZ, S., On the solution sets of differential inclusions, Boll. Un. Mat. Ital. (7), 6-A (1992), 387-394. Zbl0774.34012MR1196133
- QUINCAMPOIX, M., Frontières de domaines d'invariance et de viabilité pour les inclusions différentielles avec contraintes, C. R. Acad. Sci., Paris, 311 (1990), 411-416. Zbl0705.34014MR1075661
- QUINCAMPOIX, M., Differential inclusions and target problems, SIAM J. Control Optimization,30 (1992), 324-335. Zbl0862.49006MR1149071
- SRZEDNICKI, R., Periodic and bounded solutions in blocks for time periodic nonautonomous ordinary differential equations, Nonlinear Anal. TMA, 22 (1994), 707-737. Zbl0801.34041MR1270166
- VELIOV, V., Lipschitz continuity of the value function in optimal control, J. Optimization Theory Appl., 94, 2 (1997), 335-361. Zbl0901.49022MR1460669
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.