Some lattice properties of normal-by-finite subgroups
Maria De Falco; Carmela Musella
Bollettino dell'Unione Matematica Italiana (2003)
- Volume: 6-B, Issue: 3, page 763-771
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topDe Falco, Maria, and Musella, Carmela. "Some lattice properties of normal-by-finite subgroups." Bollettino dell'Unione Matematica Italiana 6-B.3 (2003): 763-771. <http://eudml.org/doc/194726>.
@article{DeFalco2003,
abstract = {A subgroup $H$ of a group $G$ is said to be normal-by-finite if the core $H_\{G\}$ of $H$ in $G$ has finite index in $H$. It has been proved by Buckley, Lennox, Neumann, Smith and Wiegold that if every subgroup of a group G is normal-by-finite, then $G$ is abelian-by-finite, provided that all its periodic homomorphic images are locally finite. The aim of this article is to describe the structure of groups G for which the partially ordered set $\text\{nf\}(G)$ consisting of all normal-by-finite subgroups satisfies certain relevant properties.},
author = {De Falco, Maria, Musella, Carmela},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {normal-by-finite subgroups; complemented subgroups; completely factorized groups; -groups; subgroups of finite index},
language = {eng},
month = {10},
number = {3},
pages = {763-771},
publisher = {Unione Matematica Italiana},
title = {Some lattice properties of normal-by-finite subgroups},
url = {http://eudml.org/doc/194726},
volume = {6-B},
year = {2003},
}
TY - JOUR
AU - De Falco, Maria
AU - Musella, Carmela
TI - Some lattice properties of normal-by-finite subgroups
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/10//
PB - Unione Matematica Italiana
VL - 6-B
IS - 3
SP - 763
EP - 771
AB - A subgroup $H$ of a group $G$ is said to be normal-by-finite if the core $H_{G}$ of $H$ in $G$ has finite index in $H$. It has been proved by Buckley, Lennox, Neumann, Smith and Wiegold that if every subgroup of a group G is normal-by-finite, then $G$ is abelian-by-finite, provided that all its periodic homomorphic images are locally finite. The aim of this article is to describe the structure of groups G for which the partially ordered set $\text{nf}(G)$ consisting of all normal-by-finite subgroups satisfies certain relevant properties.
LA - eng
KW - normal-by-finite subgroups; complemented subgroups; completely factorized groups; -groups; subgroups of finite index
UR - http://eudml.org/doc/194726
ER -
References
top- BUCKLEY, J. T.- LENNOX, J.C.- NEUMANN, B.H.- SMITH, H.- WIEGOLD, J., Groups with all subgroups normal-by-finite, J. Austral. Math. Soc. (Ser. A), 59 (1995), 384-398. Zbl0853.20023MR1355229
- SMITH, H.- WIEGOLD, J., Locally graded groups with all subgroups normal-by-finite, J. Austral. Math. Soc. (Ser. A), 60 (1996), 222-227. Zbl0855.20028MR1375587
- CURZIO, M., Sui gruppi per cui sono riducibili alcuni reticoli di sottogruppi notevoli, Matematiche (Catania), 19 (1964), 1-10. Zbl0166.01805MR172933
- DE FALCO, M.- MUSELLA, C., Some lattice properties of nearly normal subgroups, Quaderni Mat., 8 (2001), 87-100. Zbl1021.20017MR1949562
- DE FALCO, M.- MUSELLA, C., Groups with complete lattice of nearly normal subgroups, Rev. Mat. Complut., 15 (2002), 343-350. Zbl1021.20018MR1951815
- EMALDI, M., Sui gruppi risolubili complementati, Rend. Sem. Mat. Univ. Padova, 42 (1969), 123-128. Zbl0275.20073MR255681
- FRANCIOSI, S.- DE GIOVANNI, F., Sui gruppi con l'insieme ordinato dei sottogruppi ascendenti riducibile, Ist. Veneto Sci. Lett. Arti Cl. Sci. Mat. Natur., 139 (1980-81), 199-202.
- NAPOLITANI, F., Sui gruppi risolubili complementati, Rend. Sem. Mat. Univ. Padova, 38 (1967), 118-120. Zbl0183.02702MR227283
- RINAURO, S., Some lattice properties of virtually normal subgroups, Note Mat., 10 (1990), 273-278. Zbl0791.20025MR1204206
- ROBINSON, D. J. S., A Course in the Theory of Groups, Springer, Berlin (1982). Zbl0483.20001MR648604
- SCHMIDT, R., Subgroup Lattices of Groups, de Gruyter, Berlin (1994). Zbl0843.20003MR1292462
- SUZUKI, M., On the lattice of subgroups of finite groups, Trans. Amer. Math. Soc., 70 (1951), 345-371. Zbl0043.02502MR39717
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.