Existence and boundedness of minimizers of a class of integral functionals

A. Mercaldo

Bollettino dell'Unione Matematica Italiana (2003)

  • Volume: 6-B, Issue: 1, page 125-139
  • ISSN: 0392-4041

Abstract

top
In this paper we consider a class of integral functionals whose integrand satisfies growth conditions of the type f ( x , η , ξ ) a ( x ) | ξ | p ( 1 + | η | ) α - b 1 ( x ) | η | β 1 - g 1 ( x ) , f ( x , η , 0 ) b 2 ( x ) | η | β 2 + g 2 ( x ) , where 0 α < p , 1 β 1 < p , 0 β 2 < p , α + β i p , a x , b i x , g i x ( i = 1 , 2 ) are nonnegative functions satisfying suitable summability assumptions. We prove the existence and boundedness of minimizers of such a functional in the class of functions belonging to the weighted Sobolev space W 1 , p a , which assume a boundary datum u 0 W 1 , p a L Ω .

How to cite

top

Mercaldo, A.. "Existence and boundedness of minimizers of a class of integral functionals." Bollettino dell'Unione Matematica Italiana 6-B.1 (2003): 125-139. <http://eudml.org/doc/194751>.

@article{Mercaldo2003,
abstract = {In this paper we consider a class of integral functionals whose integrand satisfies growth conditions of the type \begin\{gather*\} f(x, \eta , \xi ) \ge a(x) \frac\{|\xi |^\{p\}\}\{(1 + |\eta |)^\{\alpha \}\} - b\_\{1\}(x)|\eta |^\{\beta \_\{1\}\}-g\_\{1\}(x),\\ f(x, \eta , 0)\le b\_\{2\}(x)|\eta |^\{\beta \_\{2\}\}+ g\_\{2\}(x), \end\{gather*\} where$0\leq \alpha <p$, $1\leq \beta_\{1\}< p$, $0\leq \beta_\{2\}< p$, $\alpha+\beta_\{i\}\leq p$, $a(x)$, $b_\{i\}(x)$, $g_\{i\}(x)$ ($i= 1$, $2$) are nonnegative functions satisfying suitable summability assumptions. We prove the existence and boundedness of minimizers of such a functional in the class of functions belonging to the weighted Sobolev space $W^\{1,p\}(a)$ , which assume a boundary datum $u_\{0\}\in W^\{1,p\}(a)\cap L^\{\infty\}(\Omega)$.},
author = {Mercaldo, A.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {125-139},
publisher = {Unione Matematica Italiana},
title = {Existence and boundedness of minimizers of a class of integral functionals},
url = {http://eudml.org/doc/194751},
volume = {6-B},
year = {2003},
}

TY - JOUR
AU - Mercaldo, A.
TI - Existence and boundedness of minimizers of a class of integral functionals
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/2//
PB - Unione Matematica Italiana
VL - 6-B
IS - 1
SP - 125
EP - 139
AB - In this paper we consider a class of integral functionals whose integrand satisfies growth conditions of the type \begin{gather*} f(x, \eta , \xi ) \ge a(x) \frac{|\xi |^{p}}{(1 + |\eta |)^{\alpha }} - b_{1}(x)|\eta |^{\beta _{1}}-g_{1}(x),\\ f(x, \eta , 0)\le b_{2}(x)|\eta |^{\beta _{2}}+ g_{2}(x), \end{gather*} where$0\leq \alpha <p$, $1\leq \beta_{1}< p$, $0\leq \beta_{2}< p$, $\alpha+\beta_{i}\leq p$, $a(x)$, $b_{i}(x)$, $g_{i}(x)$ ($i= 1$, $2$) are nonnegative functions satisfying suitable summability assumptions. We prove the existence and boundedness of minimizers of such a functional in the class of functions belonging to the weighted Sobolev space $W^{1,p}(a)$ , which assume a boundary datum $u_{0}\in W^{1,p}(a)\cap L^{\infty}(\Omega)$.
LA - eng
UR - http://eudml.org/doc/194751
ER -

References

top
  1. ALVINO, A.- FERONE, V.- TROMBETTI, G., A priori estimates for a class of non uniformly elliptic equations, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 381-391. Zbl0911.35025MR1645729
  2. BOCCARDO, L.- ORSINA, L., Existence and regularity of minima for integral functionals noncoercive in the energy space, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 95-130. Zbl1015.49014MR1655511
  3. BOCCARDO, L.- DALL'AGLIO, A., ORSINA, L., Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 51-58. Zbl0911.35049MR1645710
  4. CIANCHI, A., Local minimizers and rearrangements, Appl. Math. Optim., 27 (1993), 261-274. Zbl0801.35005MR1201624
  5. CIANCHI, A., Boundedness of solutions to variational problems under general growth conditions, Comm. Partial Differential Equations, 22 (1997), 1629-1646. Zbl0892.35048MR1469584
  6. CIANCHI, A.- SCHIANCHI, R., A priori sharp estimates for minimizers, Boll. Un. Mat. Ital., 7-B (1993), 821-831. Zbl0833.49001MR1255649
  7. DE GIORGI, E., Teoremi di semicontinuità nel calcolo delle variazioni, Lectures Notes, INDAM1968. 
  8. GIACHETTI, D.- PORZIO, M. M., Existence results for some non uniformly elliptic equations with irregular data, J. Math. Anal. Appl., 257 (2001), 100-130. Zbl0999.35027MR1824669
  9. GIACHETTI, D.- PORZIO, M. M., Regularity results for some elliptic equations with degenerate coercivity, Preprint. 
  10. GIUSTI, E., Metodi diretti nel calcolo delle Variazioni, UMI, 1994. MR1707291
  11. LADYZENSKAYA, O. A.- URAL'CEVA, N. N., Equations aux dérivées partielles de type elliptic, Dunod, Paris, 1968. Zbl0164.13001
  12. MAZ'JA, V., Sobolev spaces, Springer-Verlag, Berlin (1985). MR817985
  13. MERCALDO, A., Boundedness of minimizers of degenerate functionals, Differential Integral Equations, 9 (1996), 541-556. Zbl0858.49006MR1371706
  14. MURTHY, M. K. V.- STAMPACCHIA, G., Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pura Appl., 90 (1971), 1-122. Zbl0185.19201MR249828
  15. SCHIANCHI, R., An L -estimates for the minima of functionals of the calculus of variations., Differential Integral Equations, 2 (1989), 383-421. Zbl0719.49009MR983684
  16. TALENTI, G., Boundedeness of minimizers, Hokkaido Math. Jour., 19 (1990), 259-279. Zbl0723.58015MR1059170
  17. TROMBETTI, C., Existence and regularity for a class of non uniformly elliptic equations in two dimensions, Differential Integral Equations, 13 (2000), 687-706. Zbl0980.35054MR1750046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.