Existence and boundedness of minimizers of a class of integral functionals
Bollettino dell'Unione Matematica Italiana (2003)
- Volume: 6-B, Issue: 1, page 125-139
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topMercaldo, A.. "Existence and boundedness of minimizers of a class of integral functionals." Bollettino dell'Unione Matematica Italiana 6-B.1 (2003): 125-139. <http://eudml.org/doc/194751>.
@article{Mercaldo2003,
abstract = {In this paper we consider a class of integral functionals whose integrand satisfies growth conditions of the type \begin\{gather*\} f(x, \eta , \xi ) \ge a(x) \frac\{|\xi |^\{p\}\}\{(1 + |\eta |)^\{\alpha \}\} - b\_\{1\}(x)|\eta |^\{\beta \_\{1\}\}-g\_\{1\}(x),\\ f(x, \eta , 0)\le b\_\{2\}(x)|\eta |^\{\beta \_\{2\}\}+ g\_\{2\}(x), \end\{gather*\}
where$0\leq \alpha <p$, $1\leq \beta_\{1\}< p$, $0\leq \beta_\{2\}< p$, $\alpha+\beta_\{i\}\leq p$, $a(x)$, $b_\{i\}(x)$, $g_\{i\}(x)$ ($i= 1$, $2$) are nonnegative functions satisfying suitable summability assumptions. We prove the existence and boundedness of minimizers of such a functional in the class of functions belonging to the weighted Sobolev space $W^\{1,p\}(a)$ , which assume a boundary datum $u_\{0\}\in W^\{1,p\}(a)\cap L^\{\infty\}(\Omega)$.},
author = {Mercaldo, A.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {125-139},
publisher = {Unione Matematica Italiana},
title = {Existence and boundedness of minimizers of a class of integral functionals},
url = {http://eudml.org/doc/194751},
volume = {6-B},
year = {2003},
}
TY - JOUR
AU - Mercaldo, A.
TI - Existence and boundedness of minimizers of a class of integral functionals
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/2//
PB - Unione Matematica Italiana
VL - 6-B
IS - 1
SP - 125
EP - 139
AB - In this paper we consider a class of integral functionals whose integrand satisfies growth conditions of the type \begin{gather*} f(x, \eta , \xi ) \ge a(x) \frac{|\xi |^{p}}{(1 + |\eta |)^{\alpha }} - b_{1}(x)|\eta |^{\beta _{1}}-g_{1}(x),\\ f(x, \eta , 0)\le b_{2}(x)|\eta |^{\beta _{2}}+ g_{2}(x), \end{gather*}
where$0\leq \alpha <p$, $1\leq \beta_{1}< p$, $0\leq \beta_{2}< p$, $\alpha+\beta_{i}\leq p$, $a(x)$, $b_{i}(x)$, $g_{i}(x)$ ($i= 1$, $2$) are nonnegative functions satisfying suitable summability assumptions. We prove the existence and boundedness of minimizers of such a functional in the class of functions belonging to the weighted Sobolev space $W^{1,p}(a)$ , which assume a boundary datum $u_{0}\in W^{1,p}(a)\cap L^{\infty}(\Omega)$.
LA - eng
UR - http://eudml.org/doc/194751
ER -
References
top- ALVINO, A.- FERONE, V.- TROMBETTI, G., A priori estimates for a class of non uniformly elliptic equations, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 381-391. Zbl0911.35025MR1645729
- BOCCARDO, L.- ORSINA, L., Existence and regularity of minima for integral functionals noncoercive in the energy space, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 95-130. Zbl1015.49014MR1655511
- BOCCARDO, L.- DALL'AGLIO, A., ORSINA, L., Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 51-58. Zbl0911.35049MR1645710
- CIANCHI, A., Local minimizers and rearrangements, Appl. Math. Optim., 27 (1993), 261-274. Zbl0801.35005MR1201624
- CIANCHI, A., Boundedness of solutions to variational problems under general growth conditions, Comm. Partial Differential Equations, 22 (1997), 1629-1646. Zbl0892.35048MR1469584
- CIANCHI, A.- SCHIANCHI, R., A priori sharp estimates for minimizers, Boll. Un. Mat. Ital., 7-B (1993), 821-831. Zbl0833.49001MR1255649
- DE GIORGI, E., Teoremi di semicontinuità nel calcolo delle variazioni, Lectures Notes, INDAM1968.
- GIACHETTI, D.- PORZIO, M. M., Existence results for some non uniformly elliptic equations with irregular data, J. Math. Anal. Appl., 257 (2001), 100-130. Zbl0999.35027MR1824669
- GIACHETTI, D.- PORZIO, M. M., Regularity results for some elliptic equations with degenerate coercivity, Preprint.
- GIUSTI, E., Metodi diretti nel calcolo delle Variazioni, UMI, 1994. MR1707291
- LADYZENSKAYA, O. A.- URAL'CEVA, N. N., Equations aux dérivées partielles de type elliptic, Dunod, Paris, 1968. Zbl0164.13001
- MAZ'JA, V., Sobolev spaces, Springer-Verlag, Berlin (1985). MR817985
- MERCALDO, A., Boundedness of minimizers of degenerate functionals, Differential Integral Equations, 9 (1996), 541-556. Zbl0858.49006MR1371706
- MURTHY, M. K. V.- STAMPACCHIA, G., Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pura Appl., 90 (1971), 1-122. Zbl0185.19201MR249828
- SCHIANCHI, R., An -estimates for the minima of functionals of the calculus of variations., Differential Integral Equations, 2 (1989), 383-421. Zbl0719.49009MR983684
- TALENTI, G., Boundedeness of minimizers, Hokkaido Math. Jour., 19 (1990), 259-279. Zbl0723.58015MR1059170
- TROMBETTI, C., Existence and regularity for a class of non uniformly elliptic equations in two dimensions, Differential Integral Equations, 13 (2000), 687-706. Zbl0980.35054MR1750046
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.