A new metrization theorem

F. G. Arenas; M. A. Sánchez-Granero

Bollettino dell'Unione Matematica Italiana (2002)

  • Volume: 5-B, Issue: 1, page 109-122
  • ISSN: 0392-4041

Abstract

top
We give a new metrization theorem on terms of a new structure introduced by the authors in [2] and called fractal structure. As a Corollary we obtain Nagata-Smirnov’s and Uryshon’s metrization Theorems.

How to cite

top

Arenas, F. G., and Sánchez-Granero, M. A.. "A new metrization theorem." Bollettino dell'Unione Matematica Italiana 5-B.1 (2002): 109-122. <http://eudml.org/doc/194878>.

@article{Arenas2002,
abstract = {We give a new metrization theorem on terms of a new structure introduced by the authors in [2] and called fractal structure. As a Corollary we obtain Nagata-Smirnov’s and Uryshon’s metrization Theorems.},
author = {Arenas, F. G., Sánchez-Granero, M. A.},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {(pre-)fractal structure},
language = {eng},
month = {2},
number = {1},
pages = {109-122},
publisher = {Unione Matematica Italiana},
title = {A new metrization theorem},
url = {http://eudml.org/doc/194878},
volume = {5-B},
year = {2002},
}

TY - JOUR
AU - Arenas, F. G.
AU - Sánchez-Granero, M. A.
TI - A new metrization theorem
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/2//
PB - Unione Matematica Italiana
VL - 5-B
IS - 1
SP - 109
EP - 122
AB - We give a new metrization theorem on terms of a new structure introduced by the authors in [2] and called fractal structure. As a Corollary we obtain Nagata-Smirnov’s and Uryshon’s metrization Theorems.
LA - eng
KW - (pre-)fractal structure
UR - http://eudml.org/doc/194878
ER -

References

top
  1. ARENAS, F. G., Tilings in topological spaces, Int. Jour. of Maths. and Math. Sci., 22 (1999), 3, 611-616. Zbl0979.54014MR1717184
  2. ARENAS, F. G.- SÁNCHEZ-GRANERO, M. A., A characterization of non-archimedeanly quasimetrizable spaces, Rend. Istit. Mat. Univ. Trieste Suppl., 30 (1999), 21-30. Zbl0944.54019
  3. ARENAS, F. G.- SÁNCHEZ-GRANERO, M. A., A new aproach to metrization, Topology and its. Appl., to appear. Zbl0996.54043
  4. BURKE, D.- ENGELKING, R.- LUTZER, D., Hereditarily closure-preserving collections and metrizability, Proc.-Amer.-Math.-Soc., 51 (1975), 483-488. Zbl0307.54030MR370519
  5. ENGELKING, R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  6. FLETCHER, P.- LINDGREN, W. F., Quasi-Uniform Spaces, Lecture Notes Pure Appl. Math., 77, Marcel Dekker, New York, 1982. Zbl0501.54018MR660063
  7. HANAI, S.- MORITA, K., Closed mappings and metric spaces, Proc. Japan Acad., 32 (1956), 10-14. Zbl0073.17803MR87077
  8. MORITA, K., A condition for the metrizability of topological spaces and for n -dimensionality, Sci. Rep. Tokyo Kyoiku Daigaku Sec. A, 5 (1955), 33-36. Zbl0065.38101MR71754
  9. MORITA, K.- NAGATA, J., Topics in general topology, North Holland, 1989. Zbl0684.00017MR1053191
  10. STONE, A. H., Metrizability of decomposition spaces, Proc. Amer. Math. Soc., 7 (1956), 690-700. Zbl0071.16001MR87078
  11. ZHI-MIN, G., -spaces and g -metrizable spaces and CF family, Topology Appl., 82 (1998), 153-159. Zbl0888.54036MR1602447

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.