On the canonical ideal of a set of points

Martin Kreuzer

Bollettino dell'Unione Matematica Italiana (2000)

  • Volume: 3-B, Issue: 1, page 221-261
  • ISSN: 0392-4041

How to cite

top

Kreuzer, Martin. "On the canonical ideal of a set of points." Bollettino dell'Unione Matematica Italiana 3-B.1 (2000): 221-261. <http://eudml.org/doc/194888>.

@article{Kreuzer2000,
author = {Kreuzer, Martin},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {zero-dimensional scheme; canonical module; uniformity of configuration of points; syzygy},
language = {eng},
month = {2},
number = {1},
pages = {221-261},
publisher = {Unione Matematica Italiana},
title = {On the canonical ideal of a set of points},
url = {http://eudml.org/doc/194888},
volume = {3-B},
year = {2000},
}

TY - JOUR
AU - Kreuzer, Martin
TI - On the canonical ideal of a set of points
JO - Bollettino dell'Unione Matematica Italiana
DA - 2000/2//
PB - Unione Matematica Italiana
VL - 3-B
IS - 1
SP - 221
EP - 261
LA - eng
KW - zero-dimensional scheme; canonical module; uniformity of configuration of points; syzygy
UR - http://eudml.org/doc/194888
ER -

References

top
  1. BECK, S.- KREUZER, M., How to compute the canonical module of a set of points, in L. GONZÁLES-VEGA and T. RECIO eds., Algorithms in Algebraic Geometry and Applications, Proc. Conf. MEGA '94, Santander 1994, Progress in Math., 143, Birkhäuser Verlag, Basel (1996), 51-78. Zbl0894.13003MR1414445
  2. CAVALIERE, M. P.- ROSSI, M. E.- VALLA, G., Quadrics through a set of points and their syzygies, Math. Z., 218 (1995), 25-42. Zbl0815.14034MR1312577
  3. CAVALIERE, M. P., ROSSI, M. E. - VALLA, G., On Green-Lazarsfeld and minimal resolution conjecture for n + 3 points in P n , J. Pure Appl. Algebra, 85 (1993), 105-117. Zbl0787.14006MR1207504
  4. EISENBUD, D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math., 150, Springer, New York (1995). Zbl0819.13001MR1322960
  5. EISENBUD, D.- POPESCU, S., Gale duality and free resolutions of ideals of points, preprint (1996). Zbl0943.13011MR1688433
  6. GERAMITA, A. V.- KREUZER, M.- ROBBIANO, L., Cayley-Bacharach schemes and their canonical modules, Trans. Amer. Math. Soc., 339 (1993), 163-189. Zbl0793.14002MR1102886
  7. GERAMITA, A. V.- MAROSCIA, P.- ROBERTS, L. G., The Hilbert function of a reduced k -algebra, J. London Math. Soc. (2), 28 (1983), 443-452. Zbl0535.13012MR724713
  8. HANSEN, J. P., Points in uniform position and maximum distance separable codes, in F. ORECCHIA and L. CHIANTINI eds., Zero-Dimensional Schemes, Proc. Conf. Ravello 1992, de Gruyter, Berlin (1994), 205-211. Zbl0810.94032MR1292486
  9. HERZOG, J.- KUNZ, E., Der kanonische Modul eines Cohen-Macaulay Rings, Lect. Notes in Math., 238, Springer, Heidelberg (1971). Zbl0231.13009MR412177
  10. KREUZER, M., On the canonical module of a 0-dimensional scheme, Can. J. Math., 46 (1994), 357-379. Zbl0826.14030MR1271220
  11. KREUZER, M., Some applications of the canonical module of a 0-dimensional scheme, in F. ORECCHIA and L. CHIANTINI eds., Zero-Dimensional Schemes, Proc. Conf. Ravello 1992, de Gruyter, Berlin (1994), 243-252. Zbl0826.14031MR1292489
  12. MORA, T.- ROBBIANO, L., Points in affine and projective spaces, in D. EISENBUD and L. ROBBIANO eds., Computational Algebraic Geometry and Commutative Algebra, Proc. Conf. Cortona (1991), Symposia Math., 34, Cambridge University Press, Cambridge (1993), 106-150. Zbl0845.14029MR1253990
  13. ORECCHIA, F., Points in generic position and the conductor of curves with ordinary singularities, J. London Math. Soc. (2), 24 (1981), 85-96. Zbl0492.14017MR623673

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.