Minimizing p -harmonic maps at a free boundary

Frank Duzaar; Andreas Gastel

Bollettino dell'Unione Matematica Italiana (1998)

  • Volume: 1-B, Issue: 2, page 391-405
  • ISSN: 0392-4041

How to cite


Duzaar, Frank, and Gastel, Andreas. "Minimizing $p$-harmonic maps at a free boundary." Bollettino dell'Unione Matematica Italiana 1-B.2 (1998): 391-405. <>.

author = {Duzaar, Frank, Gastel, Andreas},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {-harmonic maps; regularity; free boundary},
language = {eng},
month = {6},
number = {2},
pages = {391-405},
publisher = {Unione Matematica Italiana},
title = {Minimizing $p$-harmonic maps at a free boundary},
url = {},
volume = {1-B},
year = {1998},

AU - Duzaar, Frank
AU - Gastel, Andreas
TI - Minimizing $p$-harmonic maps at a free boundary
JO - Bollettino dell'Unione Matematica Italiana
DA - 1998/6//
PB - Unione Matematica Italiana
VL - 1-B
IS - 2
SP - 391
EP - 405
LA - eng
KW - -harmonic maps; regularity; free boundary
UR -
ER -


  1. DUZAAR, F.- GROTOWSKI, J. F., Energy minimizing harmonic maps with an obstacle at the free boundary, Manuscripta Math., 83 (1994), 291-314. Zbl0805.58019MR1277531
  2. DUZAAR, F.- STEFFEN, K., A partial regularity theorem for harmonic maps at a free boundary, Asymptotic Anal., 2 (1989), 299-343. Zbl0699.58025MR1030353
  3. DUZAAR, F.- STEFFEN, K., An optimal estimate for the singular set of a harmonic map in the free boundary, J. Reine Angew. Math., 401 (1989), 157-187. Zbl0679.35015MR1018058
  4. FUCHS, M., p-harmonic obstacle problems. Part I: Partial regularity theory, Ann. Mat. Pura Appl. (4), 156 (1990), 127-158. Zbl0715.49003MR1080213
  5. HARDT, R.- LIN, F. H., Maps minimizing the L p -norm of the gradient, Comm. Pure Appl. Math., 40 (1987), 555-588. Zbl0646.49007MR896767
  6. HARDT, R.- LIN, F. H., Partially constrained boundary conditions with energy minimizing mappings, Comm. Pure Appl. Math., 42 (1989), 309-334. Zbl0686.35035MR982353
  7. LUCKHAUS, S., Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold, Indiana Univ. Math. J., 37 (1988), 349-367. Zbl0641.58012MR963506
  8. PRICE, P., A monotonicity formula for Yang-Mills fields, Manuscripta Math., 43 (1983), 131-156. Zbl0521.58024MR707042
  9. SCHOEN, R.- UHLENBECK, K., A regularity theorem for harmonic maps, J. Differential Geom., 17 (1982), 307-335. Zbl0521.58021MR664498
  10. SIMON, L., Singularities of geometrical variational problems, Regional Geometry Institute Lecture Notes, Utah (1992). Zbl0864.58010
  11. STEFFEN, K., An introduction to harmonic mappings, Lecture Notes, SFB 256 Universität Bonn, Vorlesungsreihe, 18 (1991). 
  12. UHLENBECK, K., Regularity for a class of nonlinear elliptic systems, Acta Mat., 138 (1977), 219-240. Zbl0372.35030MR474389

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.