Non-local approximation of functionals: variational and evolution problems

Massimo Gobbino

Bollettino dell'Unione Matematica Italiana (2000)

  • Volume: 3-B, Issue: 2, page 315-324
  • ISSN: 0392-4041

How to cite

top

Gobbino, Massimo. "Non-local approximation of functionals: variational and evolution problems." Bollettino dell'Unione Matematica Italiana 3-B.2 (2000): 315-324. <http://eudml.org/doc/195154>.

@article{Gobbino2000,
author = {Gobbino, Massimo},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {free discontinuity problems; non-local approximating functionals; Gamma-convergence},
language = {eng},
month = {6},
number = {2},
pages = {315-324},
publisher = {Unione Matematica Italiana},
title = {Non-local approximation of functionals: variational and evolution problems},
url = {http://eudml.org/doc/195154},
volume = {3-B},
year = {2000},
}

TY - JOUR
AU - Gobbino, Massimo
TI - Non-local approximation of functionals: variational and evolution problems
JO - Bollettino dell'Unione Matematica Italiana
DA - 2000/6//
PB - Unione Matematica Italiana
VL - 3-B
IS - 2
SP - 315
EP - 324
LA - eng
KW - free discontinuity problems; non-local approximating functionals; Gamma-convergence
UR - http://eudml.org/doc/195154
ER -

References

top
  1. AMBROSIO, L.; A Compactness Theorem for a New Class of Functions of Bounded Variation, Boll. Un. Mat. Ital., 3-B (1989), 857-881. Zbl0767.49001
  2. AMBROSIO, L., Free Discontinuity Problems and Special Functions with Bounded Variation, Proceedings ECM2 Budapest 1996, Progress in Mathematics, 168 (1998), 15-35. Zbl0909.49002MR1645795
  3. BRAIDES, A., Approximation of Free-Discontinuity Problems, Springer Verlag, 1998. Zbl0909.49001MR1651773
  4. DE GIORGI, E., Congetture riguardanti alcuni problemi di evoluzione, A celebration of J. F. Nash Jr, Duke Math. J., 81, 255-268. Zbl0874.35027
  5. GOBBINO, M., Finite Difference Approximation of the Mumford-Shah Functional, Comm. Pure Appl. Math., 51 (1998), 197-228. Zbl0888.49013MR1488299
  6. GOBBINO, M., Gradient Flow for the one-dimensional Mumford-Shah Functional, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Vol. XXVII (1998), 145-193. Zbl0931.49010MR1658873
  7. GOBBINO, M.- MORA, M. G., Finite Difference Approximation of of Free Discontinuity Problems, to appear on «The Royal Society of Edinburgh Proceedings A». Zbl1001.49019MR1838502
  8. MUMFORD, D.- SHAH, J.; Optimal Approximation by Piecewise Smooth Functions and Associated Variational Problem, Comm. Pure Appl. Math., 17 (1989), 577-685. Zbl0691.49036

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.