On the suspension homomorphism

S. Dragotti; G. Magro; L. Parlato

Bollettino dell'Unione Matematica Italiana (2002)

  • Volume: 5-B, Issue: 1, page 247-257
  • ISSN: 0392-4041


In this paper we investigate the conditions for the suspension homomorphism s : Θ r - 1 F S n - 1 , x 0 Θ r F S n , x 0 is onto or an isomorphism.

How to cite


Dragotti, S., Magro, G., and Parlato, L.. "On the suspension homomorphism." Bollettino dell'Unione Matematica Italiana 5-B.1 (2002): 247-257. <http://eudml.org/doc/195222>.

abstract = {In this paper we investigate the conditions for the suspension homomorphism $$s \colon \Theta^\{\mathcal\{F\}\}\_\{r-1\}(S^\{n-1\}, x\_\{0\}) \to \Theta ^\{\mathcal\{F\}\}\_\{r\}(S^\{n\}, x\_\{0\})$$ is onto or an isomorphism. },
author = {Dragotti, S., Magro, G., Parlato, L.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {247-257},
publisher = {Unione Matematica Italiana},
title = {On the suspension homomorphism},
url = {http://eudml.org/doc/195222},
volume = {5-B},
year = {2002},

AU - Dragotti, S.
AU - Magro, G.
AU - Parlato, L.
TI - On the suspension homomorphism
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/2//
PB - Unione Matematica Italiana
VL - 5-B
IS - 1
SP - 247
EP - 257
AB - In this paper we investigate the conditions for the suspension homomorphism $$s \colon \Theta^{\mathcal{F}}_{r-1}(S^{n-1}, x_{0}) \to \Theta ^{\mathcal{F}}_{r}(S^{n}, x_{0})$$ is onto or an isomorphism.
LA - eng
UR - http://eudml.org/doc/195222
ER -


  1. ANDERSON, G. A., Resolutions of generalized polyhedral manifolds, Tôhoku Mat. Journ., 31 (1979), 495-517. Zbl0455.57008MR558680
  2. DRAGOTTI, S.- ESPOSITO, R.- MAGRO, G., F -varietà e funzioni dual cellulari, Ricerche di Matematica, 33 (1990), 21-33. Zbl0737.57010MR1101302
  3. DRAGOTTI, S.- ESPOSITO, R.- MAGRO, G., Construction of functors connecting homology and homotopy theories, Proc. of Amer. Math. Soc., 120 (1994), 635-646. Zbl0814.55001MR1165052
  4. DRAGOTTI, S.- ESPOSITO, R.- MAGRO, G.- PARLATO, L., Geometric representation of homology functor, Ricerche di Matematica, 45 (1996), 3-12. Zbl0936.55003MR1469718
  5. DRAGOTTI, S.- MAGRO, G., A representation of homotopy theory by homotopy spheres, Ricerche di Matematica, 46 (1997), 13-22. Zbl0949.55005MR1615723
  6. DRAGOTTI, S.- MAGRO, G.- PARLATO, L., On the groups Θ n F of a sphere, Boll. U.M.I. (8) 3-B (2000), 337-346. Zbl0962.55007MR1769990
  7. ESPOSITO, R.- PARLATO, L., I teoremi di Hurewicz e Whitehead per funtori omotopici associati a manifold classes, Ricerche di Matematica, 44, (1995), 359-368. Zbl0916.55008MR1469707
  8. FREUDENTHAL, H., Compositio Math, 5 (1937), 299-314. JFM63.1161.02
  9. MAUNDER, C. R. F., Algebraic topology, Van Nostrand, London, 1970. Zbl0205.27302
  10. ROURKE, C. P.- SANDERSON, B. J., Introduction to PL topology, Ergeb. Mat. Band. 69, Springer-Verlag, Berlin and New York, 1972. Zbl0254.57010MR350744
  11. BUONCRISTIANO, S.- ROURKE, C. P.- SANDERSON, B. J., A geometric approach in homology theory, Cambridge University Press - London - New York, 1976. Zbl0315.55002MR413113
  12. SPANIER, E. H., Algebraic Topology, McGraw-Hill, New York, 1966. Zbl0145.43303MR210112
  13. WHITEHEAD, J. H. C., Note on suspension, Quart. J. Math. Oxford (2), 1 (1950), 9-22. Zbl0035.24802MR34579

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.