Good and very good magnifiers

Marin Gutan

Bollettino dell'Unione Matematica Italiana (2000)

  • Volume: 3-B, Issue: 3, page 793-810
  • ISSN: 0392-4041

How to cite

top

Gutan, Marin. "Good and very good magnifiers." Bollettino dell'Unione Matematica Italiana 3-B.3 (2000): 793-810. <http://eudml.org/doc/195325>.

@article{Gutan2000,
author = {Gutan, Marin},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {left magnifiers; inner left translations; semigroups; bicyclic monoid},
language = {eng},
month = {10},
number = {3},
pages = {793-810},
publisher = {Unione Matematica Italiana},
title = {Good and very good magnifiers},
url = {http://eudml.org/doc/195325},
volume = {3-B},
year = {2000},
}

TY - JOUR
AU - Gutan, Marin
TI - Good and very good magnifiers
JO - Bollettino dell'Unione Matematica Italiana
DA - 2000/10//
PB - Unione Matematica Italiana
VL - 3-B
IS - 3
SP - 793
EP - 810
LA - eng
KW - left magnifiers; inner left translations; semigroups; bicyclic monoid
UR - http://eudml.org/doc/195325
ER -

References

top
  1. ANDERSON, F.- FULLER, K., Rings and categories of modules (Springer-Verlag, 1973). Zbl0301.16001MR1245487
  2. CATINO, F.- MIGLIORINI, F., Magnifying elements in semigroups, Semigroup Forum, 44 (1992), 314-319. Zbl0746.20035MR1152539
  3. DESQ, R., Relations d'équivalence principales en théorie des demi-groupes, Ann. Fac. Sci. Univ. Toulouse, 27 (1963), 1-145. Zbl0141.01702MR180610
  4. DESQ, R., Sur les demi-groupes ayant des éléments unités d'un coté, C. R. Acad. Sci. Paris, 256 (1963), 567-569. Zbl0109.01201MR146285
  5. GUTAN, M., Semigroups with strong and nonstrong magnifying elements, Semigroup Forum, 53 (1996), 384-386. Zbl0859.20050MR1406783
  6. GUTAN, M., Semigroups which contain magnifying elements are factorizable, Comm. in Algebra, 25 (1997), 3953-3963. Zbl0898.20040MR1481578
  7. GUTAN, M., Semigroups with magnifiers admitting minimal subsemigroups, Comm. in Algebra, 27 (1999), 1975-1996. Zbl0966.20026MR1679659
  8. HOFMANN, K. H., From a topological theory of semigroups to a geometric one, Semigroup Forum, 50 (1995), 123-134. Zbl0824.22008MR1301557
  9. HOWIE, J. M., Fundamentals of Semigroup Theory (Oxford Science Publishers, 1995). Zbl0835.20077MR1455373
  10. JACOBSON, N., Some remarks on one-sided inverses, Proc. Amer. Math. Soc., 1 (1950), 352-355. Zbl0037.15901MR36223
  11. JURGENSEN, H.- MIGLIORINI, F.- SZEP, J., Semigroups, (Akadémiai Kiadó, Budapest, 1991). Zbl0789.20067MR1131287
  12. KLIMOV, V. M., Embeddings of semigroups in factorizable semigroups, Siber. Math. J., 14 (1973), 715-723. Zbl0284.20061MR327950
  13. LJAPIN, E. S., Semigroups (Amer. Math. Soc., Providence, R. S.1963). 
  14. MAGILL, K. D. JR., Magnifying elements of transformation semigroups, Semigroup Forum, 48 (1994), 119-126. Zbl0805.20050MR1245911
  15. MIGLIORINI, F., Some researches on semigroups with magnifying elements, Periodica Math. Hung., 1 (1971), 279-286. Zbl0235.20060MR291329
  16. MIGLIORINI, F., Magnifying elements and minimal subsemigroups in semigroups, Periodica Math. Hung., 5 (1974), 279-288. Zbl0278.20059MR364508
  17. MIGLIORINI, F., Studio sui semigruppi con elementi accrescitivi, Rend. Ist. Mat. Univ. Trieste, 6 (1974), 11-36. Zbl0288.20081MR352307
  18. NIVAT, M.- PERROT, F., Une généralisation du monoïde bicyclique, C. R. Acad. Sci. Paris, Sér A., 271 (1970), 824-827. Zbl0206.30304MR271258
  19. PATELLI, A., Una nuova famiglia P A di semigruppi con elementi accrescitivi, Rend. Ist. Lombardo Sc. Lett. A, 122 (1988), 335-367. Zbl0702.20048
  20. REILLY, N., Bisimple ω -semigroups, Proc. Glasgow Math. Soc., 7 (1966), 160-167. Zbl0138.01902MR190252
  21. TOLO, K., Factorizable semigroups, Pacific J. Math., 31 (1969), 523-535. Zbl0188.05401MR268309
  22. WARNE, R. J., Homomorphism of d -simple inverse semigroups with identity, Pacific J. Math., 14 (1964), 1111-1122. Zbl0158.02005MR167554

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.