Non-Markovian quadratic forms obtained by homogenization
Bollettino dell'Unione Matematica Italiana (2003)
- Volume: 6-B, Issue: 2, page 323-337
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBriane, Marc. "Non-Markovian quadratic forms obtained by homogenization." Bollettino dell'Unione Matematica Italiana 6-B.2 (2003): 323-337. <http://eudml.org/doc/195346>.
@article{Briane2003,
abstract = {This paper is devoted to the asymptotic behaviour of quadratic forms defined on $L^\{2\}$. More precisely we consider the $\Gamma$-convergence of these functionals for the $L^\{2\}$-weak topology. We give an example in which some limit forms are not Markovian and hence the Beurling-Deny representation formula does not hold. This example is obtained by the homogenization of a stratified medium composed of insulating thin-layers.},
author = {Briane, Marc},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {non-equicoercive quadratic form; homogenization; stratified structure},
language = {eng},
month = {6},
number = {2},
pages = {323-337},
publisher = {Unione Matematica Italiana},
title = {Non-Markovian quadratic forms obtained by homogenization},
url = {http://eudml.org/doc/195346},
volume = {6-B},
year = {2003},
}
TY - JOUR
AU - Briane, Marc
TI - Non-Markovian quadratic forms obtained by homogenization
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/6//
PB - Unione Matematica Italiana
VL - 6-B
IS - 2
SP - 323
EP - 337
AB - This paper is devoted to the asymptotic behaviour of quadratic forms defined on $L^{2}$. More precisely we consider the $\Gamma$-convergence of these functionals for the $L^{2}$-weak topology. We give an example in which some limit forms are not Markovian and hence the Beurling-Deny representation formula does not hold. This example is obtained by the homogenization of a stratified medium composed of insulating thin-layers.
LA - eng
KW - non-equicoercive quadratic form; homogenization; stratified structure
UR - http://eudml.org/doc/195346
ER -
References
top- ARBOGAST, T.- DOUGLAS, J.- HORNUNG, U., Derivation of the double porosity model of single phase flow via homogenization theory, S.I.A.M. J. Math. Anal., 21 (1990), 823-836. Zbl0698.76106MR1052874
- BELLIEUD, M.- BOUCHITTÉ, G., Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects, Annali della Scuola Normale Superiore di Pisa, 26, (4) (1998), 407-436. Zbl0919.35014MR1635769
- BELLIEUD, M.- BOUCHITTÉ, G., Homogenization of degenerate elliptic equations in a fiber structure, preprint 98/09 ANLA, Univ. Toulon.
- BEURLING, A.- DENY, J., Espaces de Dirichlet, Acta Matematica, 99 (1958), 203-224. Zbl0089.08106MR98924
- BEURLING, A.- DENY, J., Dirichlet spaces, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 208-215. Zbl0089.08201MR106365
- BRIANE, M., Homogenization in some weakly connected domains, Ricerche di Matematica, XLVII, no. 1 (1998), 51-94. Zbl0928.35037MR1760323
- DAL MASO, G., An introduction to -convergence, Birkhäuser, Boston (1993). Zbl0816.49001MR1201152
- FENCHENKO, V. N.- KHRUSLOV, E. YA., Asymptotic of solution of differential equations with strongly oscillating and degenerating matrix of coefficients, Dokl. AN Ukr. SSR, 4 (1980). Zbl0426.35016
- FUKUSHIMA, M., Dirichlet Forms and Markov Processes, North-Holland Math. Library, 23, North-Holland and Kodansha, Amsterdam (1980). Zbl0422.31007MR569058
- KHRUSLOV, E. YA., The asymptotic behavior of solutions of the second boundary value problems under fragmentation of the boundary of the domain, Maths. USSR Sbornik, 35, no. 2 (1979). Zbl0421.35019
- KHRUSLOV, E. YA., Homogenized models of composite media, Composite Media and Homogenization Theory, G. Dal Maso and G. F. Dell'Antonio editors, in Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser (1991), 159-182. Zbl0737.73009MR1145750
- LE JEAN, Y., Mesures associées à une forme de Dirichlet. Applications, Bull. Soc. Math. de France, 106 (1978), 61-112. Zbl0393.31008
- MOSCO, U., Composite media and asymptotic Dirichlet forms, Journal of Functional Analysis, 123, no. 2 (1994), 368-421. Zbl0808.46042MR1283033
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.