Applications of the smooth integral in the theory of weak solutions of ordinary differential equations
Časopis pro pěstování matematiky (1989)
- Volume: 114, Issue: 2, page 113-132
- ISSN: 0528-2195
Access Full Article
topHow to cite
topLigęza, Jan. "Applications of the smooth integral in the theory of weak solutions of ordinary differential equations." Časopis pro pěstování matematiky 114.2 (1989): 113-132. <http://eudml.org/doc/19540>.
@article{Ligęza1989,
author = {Ligęza, Jan},
journal = {Časopis pro pěstování matematiky},
keywords = {smooth integral; weak solution; fixed point theorems},
language = {eng},
number = {2},
pages = {113-132},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {Applications of the smooth integral in the theory of weak solutions of ordinary differential equations},
url = {http://eudml.org/doc/19540},
volume = {114},
year = {1989},
}
TY - JOUR
AU - Ligęza, Jan
TI - Applications of the smooth integral in the theory of weak solutions of ordinary differential equations
JO - Časopis pro pěstování matematiky
PY - 1989
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 114
IS - 2
SP - 113
EP - 132
LA - eng
KW - smooth integral; weak solution; fixed point theorems
UR - http://eudml.org/doc/19540
ER -
References
top- P. Antosik J. Mikusinski R. Sikorski, Theory of distributions, The sequential approach Amsterdam-Warsaw, 1973. (1973) MR0365130
- P. Antosik, Order with respect to a measure and its application to the investigation of the product of generalized functions, (Russian). Studia Math. 26 (1966), 247-262. (1966) MR0203452
- P. Antosik, On the modulus of a distribution, Bull. Acad. Polon. Sci. Ser. Sc. Mat. Astr. Phys. 15 (1967), 717-722. (1967) Zbl0173.41703MR0512036
- T. Dlotko, Application of the notation of rotation of a vector field in the theory of differential equations and their generalizations, (Polish). Prace Naukowe U. Śl. w Katowicach 32 (1971). (1971)
- J. Dugundi A. Granas, Fixed point theory, Warszawa 1982. (1982)
- V. Doležal, Dynamics of linear systems, Praha 1964. (1964) MR0169744
- A. F. Filippov, Differential equations with discontinuous right hand side, (Russian). Moskva 1985. (1985) Zbl0571.34001MR0790682
- S. Fučík A. Kufner, Nonlinear differential equations, (Czech). Academia, Praha 1978. (1978)
- I. M. Gelfand G. J. Shilov, Generalized functions and operations on them, (Russian). Moskva 1958. (1958)
- A. Halanay D. Wexler, Qualitative theory of impulse systems, (Russian). Moskva 1971. (1971)
- T. H. Hildebrandt, On systems of linear differential Stieltjes-integral equations, Illinois Jour, of Math. 3 (1959), 352-373. (1959) MR0105600
- I. T. Kiguradze, Some singular boundary value problems for odinary differential equations, (Russian). Izdat. Tbiliskogo universiteta, Tbilisi 1975. (1975) MR0499402
- M. A. Krasnosielski, Topological methods in the theory of nonlinear integral equations, (Russian). Moskva 1956. (1956)
- S. G. Krejn, Functional analysis, Moskva 1972. (1972) Zbl0236.47001
- J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math. J. 7 (1959), 418-449. (1959) Zbl0094.05902MR0111875
- J. Kurzweil, Generalized ordinary differential equations, Ibidem 8 (1958), 360-389. (1958) Zbl0102.07003MR0111878
- J. Kurzweil, Linear differential equations with distributions as coefficients, Bull. Acad. Polon. Sci. Ser. Math. Astr. et Phys. 7 (1959), 557-560. (1959) Zbl0117.34401MR0111887
- A. Lasota Z. Opial, L'existence et l'unicité des solutions du problème d'interpolations pour l'equation differentielle ordinaire d'ordre n, Ann. Polon. Math. 15 (1964), 254-271. (1964) MR0173804
- A. Lasota F. H. Szafraniec, Application of differential equations with distributional coefficients to optimal control theory, Zeszyty Naukowe U. J., Prace Mat. 12 (1968), 31 - 37. (1968) MR0223626
- A. Lasota J. Traple, Nicoletti boundary value problem for systems of linear differential equations with distributional perturbations, Ibidem 15 (1971), 103-108. (1971) MR0369785
- A. J. Levin, On linear differential equations of the second order, (Russian). Dokl. Ak. Nauk SSSR 153 (1963), 1257-1260. (1963) MR0159060
- J. Ligeza, On an integral inequality, Prace Naukowe U. Śl. w Katowicach, Prace Mat. 7 (1977), 37-41. (1977) Zbl0368.26004MR0432842
- J. Ligeza, On distributional solutions of some systems of linear differential equations, Časopis pěst. mat. 102 (1977), 30-36. (1977) Zbl0345.34003MR0460756
- J. Ligeza, On generalized solutions of boundary value problems for non linear differential equations of second order, Prace Naukowe U. Śl. w Katowicach, Prace Mat. 9 (1979), 20-29. (1979) Zbl0421.34020MR0594426
- A. D. Myshkis A. M. Samoilenko, System with impulses at given time moments, (Russian). Mat. sb. 74, 116: 2 (1967), 202-208. (1967) MR0221000
- R. Pfaff, Gewöhnliche lineare Differentialgleichungen n-ter Ordnung mit Distributionskoeffizienten, Proc. of the Royal Society of Edinburgh. Sect. A 85 (1980), 291-298. (1980) Zbl0424.34011MR0574022
- R. Pfaff, Generalized systems of linear differential equations, Ibidem 89 A (1981), 1-14. (1981) Zbl0475.34005MR0628123
- Š. Schwabik M. Tvrdý O. Vejvoda, Differential and integral equations, Academia, Praha 1979. (1979) MR0542283
- J. Traple, Boundary value problems for linear differential equations with distributional perturbations, Zeszyty Naukowe U. J., Prace Mat. 17 (1975), 119-126. (1975) Zbl0352.34013MR0399552
- Ch. de la Valleé-Poussin, Sur l'equation differentielle du second ordre, Jour. Math. Pures et Apl. (1929), 125-144. (1929)
- N.I. Wasilev J. A. Klokov, Elements of the theory of boundary value problems for ordinary differential equations, (Russian). Riga 1978. (1978)
- Š. Schwabik, Generalized differential equations, Rozpravy ČSAV, Praha 1985. (1985) Zbl0594.34002
- J. Ligeza, Weak solutions of ordinary differential equations, Prace Naukowe U. Śl. w Katowicach Nr 842 (1986). (1986) Zbl0605.34009MR0868863
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.