Fourier transform, restriction theorem, and scaling
Bollettino dell'Unione Matematica Italiana (1999)
- Volume: 2-B, Issue: 2, page 383-387
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topIosevich, Alex. "Fourier transform, $L^2$ restriction theorem, and scaling." Bollettino dell'Unione Matematica Italiana 2-B.2 (1999): 383-387. <http://eudml.org/doc/195474>.
@article{Iosevich1999,
author = {Iosevich, Alex},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {restriction theorem; Fourier transform; hypersurface; decay; norm inequality},
language = {eng},
month = {6},
number = {2},
pages = {383-387},
publisher = {Unione Matematica Italiana},
title = {Fourier transform, $L^2$ restriction theorem, and scaling},
url = {http://eudml.org/doc/195474},
volume = {2-B},
year = {1999},
}
TY - JOUR
AU - Iosevich, Alex
TI - Fourier transform, $L^2$ restriction theorem, and scaling
JO - Bollettino dell'Unione Matematica Italiana
DA - 1999/6//
PB - Unione Matematica Italiana
VL - 2-B
IS - 2
SP - 383
EP - 387
LA - eng
KW - restriction theorem; Fourier transform; hypersurface; decay; norm inequality
UR - http://eudml.org/doc/195474
ER -
References
top- BRUNA, J.- NAGEL, A.- WAINGER, S., Convex hypersurfaces and Fourier transform, Ann. Math., 127 (1988), 333-365. Zbl0666.42010MR932301
- GREENLEAF, A., Principal curvature and harmonic analysis, Indiana Math J., 30 (1982), 519-537. Zbl0517.42029MR620265
- IOSEVICH, A.- SAWYER, E., Oscillatory integrals and maximal averaging operators associated to homogeneous hypersurfaces, Duke Math J., 82 (1996). Zbl0898.42004MR1387224
- IOSEVICH, A.- SAWYER, E., Maximal averages over surfaces, to appear in Adv. Math. (1996). Zbl0921.42015MR1488239
- SCHULZ, H., Convex hypersurfaces of finite type and the asymptotics of their Fourier transforms, Indiana Univ. Math. J., 40 (1991). Zbl0758.42007MR1142714
- STEIN, E. M., Harmonic Analysis in (Proc. Conf. De Paul University), Math. Assoc. Am. Studies in Math., 13 (1976). Zbl0337.42016MR461002
- TOMAS, P., A restriction theorem for the Fourier transform, Bull. Am. Math. Soc., 81 (1975), 477-478. Zbl0298.42011MR358216
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.