Numerical characters of graded algebras

Giuseppe Valla

Bollettino dell'Unione Matematica Italiana (2004)

  • Volume: 7-B, Issue: 2, page 257-274
  • ISSN: 0392-4041

Abstract

top
This is the summary of the plenary talk I gave in Milan at the XVII Meeting of the Unione Matematica Italiana. We focus on some relevant numerical characters of the standard graded algebras and, in some case, we explain their geometric meaning.

How to cite

top

Valla, Giuseppe. "Numerical characters of graded algebras." Bollettino dell'Unione Matematica Italiana 7-B.2 (2004): 257-274. <http://eudml.org/doc/195513>.

@article{Valla2004,
abstract = {This is the summary of the plenary talk I gave in Milan at the XVII Meeting of the Unione Matematica Italiana. We focus on some relevant numerical characters of the standard graded algebras and, in some case, we explain their geometric meaning.},
author = {Valla, Giuseppe},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {257-274},
publisher = {Unione Matematica Italiana},
title = {Numerical characters of graded algebras},
url = {http://eudml.org/doc/195513},
volume = {7-B},
year = {2004},
}

TY - JOUR
AU - Valla, Giuseppe
TI - Numerical characters of graded algebras
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/6//
PB - Unione Matematica Italiana
VL - 7-B
IS - 2
SP - 257
EP - 274
AB - This is the summary of the plenary talk I gave in Milan at the XVII Meeting of the Unione Matematica Italiana. We focus on some relevant numerical characters of the standard graded algebras and, in some case, we explain their geometric meaning.
LA - eng
UR - http://eudml.org/doc/195513
ER -

References

top
  1. ALEXANDER, J.- HIRSCHOWITZ, A., La méthod d'Horace éclaté: Application à l'interpolation en degré quatre, Inv. Math., 107 (1992), 585-602. Zbl0784.14002MR1150603
  2. ANICK, D., Thin algebras of embedding dimension three, J. Algebra, 100 (1986), 235-259. Zbl0588.13013MR839581
  3. BAYER, D.- STILLMAN, M., A criterion for detecting m -regularity, Invent. Math., 87 (1987), 1-11. Zbl0625.13003MR862710
  4. BIGATTI, A. M., Upper bounds for the Betti numbers of a given Hilbert Function, Comm. Algebra, 21 (7) (1993), 2317-2334. Zbl0817.13007MR1218500
  5. BRIGNONE, M.- VALLA, G., On the resolutions of certain level algebras, preprint (2003). Zbl1116.13009MR2102446
  6. BRUNS, W.- HERZOG, J., Cohen-Macaulay rings, Cambridge studies in advanced mathematics, 39, 1993. Zbl0788.13005MR1251956
  7. BUCHBERGER, B., An algorithmic criterion for the solvability of algebraic system of equations, Aequationes Math., 4 (1970), 374-383. Zbl0212.06401
  8. CAPANI, A.- NIESI, G.- ROBBIANO, L., A system for doing Computations in Commutative Algebra (1995). Available via anonymous ftp from cocoa.dima.unige.it 
  9. CAVALIERE, M. P.- ROSSI, M. E.- VALLA, G., The Green-Lazarsfeld conjecture for n + 4 points in P n , Rend. Sem. Mat. Univ. Politec. Torino, 49 (1991), 175-195. Zbl0796.14028MR1219266
  10. CHARALAMBOUS, H.- EVANS, E. G., Resolutions with a given Hilbert Function, Contemporary Math., 159 (1994), 19-26. Zbl0799.18009MR1266176
  11. DE NEGRI, E.- VALLA, G., The h -vector of a Gorenstein codimension three domain, Nagoya Math. J., 138 (1995), 113-140. Zbl0838.13010MR1339945
  12. EISENBUD, D.- GOTO, S., Linear free resolutions and minimal multiplicity, J. Algebra, 88 (1984), 89-133. Zbl0531.13015MR741934
  13. EISENBUD, D.- POPESCU, S., The projective geometry of the Gale transform, J. Algebra, 230 (2000), 127-173. Zbl1060.14528MR1774761
  14. FRÖBERG, R., An inequality for Hilbert series of graded algebras, Math. Scand., 56 (1985), 117-144. Zbl0582.13007MR813632
  15. GREEN, M., Koszul cohomology and the Geometry of projective varieties, J. Diff. Geom. (1984), 125-171. Zbl0559.14009MR739785
  16. GREEN, M., Generic Initial ideals, Six Lectures on Commutative Algebra (Bellaterra), Progr. Math.166, Birkhäuser Basel (1998), 119-186. Zbl0933.13002MR1648665
  17. GRUSON, L.- PESKINE, C., Genre des courbes de l'espace projectif, Algebraic Geometry, Lect. Notes Math., 687 (1978), Springer. Zbl0412.14011MR527229
  18. GRUSON, L.- LAZARSFELD, R.- PESKINE, C., On a theorem of Castelnuovo and the equations defining space curves, Inv. Math., 72 (1983), 491-506. Zbl0565.14014MR704401
  19. HULETT, H. A., Maximum Betti numbers of homogeneous ideal with a given Hilbert Function, Comm. Algebra, 21 (7) (1993), 2335-2350. Zbl0817.13006MR1218501
  20. KLEIMAN, S., Les théoremes de finitude pour le foncteur de Picard, Exposè XIII. In Théorie des Intersections et Théorem de Riemann-Roch (SGA VI), SpringerLect. Notes in Math., 225 (1971), 616-666. Zbl0227.14007MR354655
  21. LORENZINI, A. M., The minimal resolution conjecture, J. Algebra, 156 (1993), 5-35. Zbl0811.13008MR1213782
  22. LAZARSFELD, R., A sharp Castelnuovo bound for smooth surfaces, Duke Math. J., 55 (1987), 423-429. Zbl0646.14005MR894589
  23. MACAULAY, F. S., Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc., 26 (1927), 531-555. JFM53.0104.01
  24. MCDUFF, D.- POLTEROVICH, L., Symplectic packings and Algebraic Geometry, Inv. Math., 115 (1994), 405-429. Zbl0833.53028MR1262938
  25. ROSSI, M. E.- TRUNG, N. V.- VALLA, G., Castelnuovo-Mumford regularity and extended degree, Trans. Amer. Math. Soc., 355, no. 5 (2003), 1773-1786. Zbl1075.13008MR1953524
  26. SRINIVAS, V.- TRIVEDI, V., On the Hilbert Function of a Cohen-Macaulay ring, J. Algebraic Geom., 6 (1997), 733-751. Zbl0957.13009MR1487234
  27. STANLEY, R., Hilbert Functions of graded algebras, Adv. in Math., 28 (1978), 57-83. Zbl0384.13012MR485835
  28. STANLEY, R., The Upper Bound conjecture and Cohen-Macaulay rings, Studies in Appl. Math., 54 (1975), 135-142. Zbl0308.52009MR458437

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.