On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrödinger operator
Bollettino dell'Unione Matematica Italiana (2002)
- Volume: 5-B, Issue: 1, page 149-161
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topFabbri, R.. "On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrödinger operator." Bollettino dell'Unione Matematica Italiana 5-B.1 (2002): 149-161. <http://eudml.org/doc/195559>.
@article{Fabbri2002,
abstract = {In this paper we study the Lyapunov exponent $\beta(E)$ for the one-dimensional Schrödinger operator with a quasi-periodic potential. Let $\Gamma\subset \mathbb\{R\}^\{k\}$ be the set of frequency vectors whose components are rationally independent. Let $\Gamma\subset \mathbb\{R\}^\{k\}$, and consider the complement in $\Gamma \times C^\{r\} (\mathbb\{T\}^\{k\} )$ of the set $\mathcal\{D\}$ where exponential dichotomy holds. We show that $\beta=0$ is generic in this complement. The methods and techniques used are based on the concepts of rotation number and exponential dichotomy.},
author = {Fabbri, R.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {149-161},
publisher = {Unione Matematica Italiana},
title = {On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrödinger operator},
url = {http://eudml.org/doc/195559},
volume = {5-B},
year = {2002},
}
TY - JOUR
AU - Fabbri, R.
TI - On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrödinger operator
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/2//
PB - Unione Matematica Italiana
VL - 5-B
IS - 1
SP - 149
EP - 161
AB - In this paper we study the Lyapunov exponent $\beta(E)$ for the one-dimensional Schrödinger operator with a quasi-periodic potential. Let $\Gamma\subset \mathbb{R}^{k}$ be the set of frequency vectors whose components are rationally independent. Let $\Gamma\subset \mathbb{R}^{k}$, and consider the complement in $\Gamma \times C^{r} (\mathbb{T}^{k} )$ of the set $\mathcal{D}$ where exponential dichotomy holds. We show that $\beta=0$ is generic in this complement. The methods and techniques used are based on the concepts of rotation number and exponential dichotomy.
LA - eng
UR - http://eudml.org/doc/195559
ER -
References
top- CHOQUET, G., Lectures on Analysis, vol I, II, III. BenjaminN.Y., 1969. Zbl0181.39601
- CHULAEVSKY, V.- SINAI, YA., Anderson localization for the 1-D discrete Schrödinger operators with two-frequency potential, Comm. Math. Phys, 125 (1989), 91-112. Zbl0743.60058MR1017741
- COPPEL, A., Dichotomies in Stability Theory, Lectures Notes in Mathematics, 629, Springer-Verlag, New York/Heidelberg/Berlin (1978). Zbl0376.34001MR481196
- DE CONCINI, C.- JOHNSON, R., The algebraic-geometric AKNS potentials, Erg. Th. Dyn. Sys.7 (1992), 1-24. Zbl0636.35077MR886368
- ELIASSON, L.H., Floquet solutions for the 1-dimensional quasi-periodic Schrodinger equation, Commun. Math. Phys., 146 (1992), 447-482. Zbl0753.34055MR1167299
- ELIASSON, L.H., Discrete one-dimensional quasi-periodic Schrodinger operator with pure point spectrum, Acta Math., 179 (1997), 153-196. Zbl0908.34072MR1607554
- FABBRI, R., Genericità dell'Iperbolicita nei Sistemi Differenziali Lineari di Dimensione Due, Ph.D. Thesis, Università di Firenze, 1997.
- FABBRI, R.- JOHNSON, R., On the Lyapunov exponent of certain -valued cocycles, Diff. Eqns. and Dynam. Sys., 7, 3 (1999), 349-370. Zbl0989.34041MR1861078
- FABBRI, R.- JOHNSON, R., Genericity of exponential dichotomy for two-dimensional quasi-periodic linear differential systems, Ann. Mat. Pura ed Appl., 178 (2000), 175-193. Zbl1037.34043MR1849385
- FEDERER, H., Geometric Measure Theory, Springer-Verlag, New York / Heidelberg / Berlin, 1967. Zbl0176.00801
- FABBRI, R.- JOHNSON, R.- PAVANI, R., On the Nature of the Spectrum of the Quasi-Periodic Schrodinger Operator, Nonlinear Analysis RWA, 3 (2001), 37-59. Zbl1036.34097MR1941947
- FRÖHLICH, J.- SPENCER, T.- WITTWER, P., Localization for a class of one dimensional quasi-periodic Schrodinger operators, Commun. Math. Phys., 132 (1990), 5-25. Zbl0722.34070MR1069198
- GIACHETTI, R.- JOHNSON, R., Spectral theory of two-dimensional almost periodic differential operators and its relation to classes of nonlinear evolution equations, Il Nuovo Cimento, 82 (1984), 125-168. MR770735
- HERMAN, M., Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractèr local d¡¯un théorèm d'Arnold et de Moser sur le tore en dimension 2, Commun. Math. Helv., 58 (1983), 453-502. Zbl0554.58034MR727713
- JOHNSON, R., Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients, Journal of Differential Equations, 61 (1986), 54-78. Zbl0608.34056MR818861
- JOHNSON, R., Cantor spectrum for the quasi-periodic Schrodinger equation, Journal of Differential Equations, 91 (1991), 88-110. Zbl0734.34074MR1106119
- JOHNSON, R.- MOSER, J., The rotation number for almost periodic potentials, Comm. Math. Phys., 84 (1982), 403-438. Zbl0497.35026MR667409
- JOHNSON, R.- PALMER, K. J.- SELL, G. R., Ergodic properties of linear dynamical systems, Siam J. Math. Anal., 18 (1987), 1-33. Zbl0641.58034MR871817
- KOTANI, S., Lyapunov indices determine absolutely continuous spectra of stationary random one-dimensional Scrodinger operators, Proc. Taniguchi Symp. S.S., Katata (1982), 225-247. Zbl0549.60058MR780760
- MAGNUS, W.- WINKLER, S., Hill's Equation, New York-London-Sydney, Interscience Publishers, 1966. Zbl0158.09604MR197830
- MAÑÉ, R., OSELEDEC'S THEOREM FROM THE GENERIC VIEWPOINT, PROC. INT. CONGR. MATH. 1983, WARSAW, 1296-1276. Zbl0584.58007MR804776
- MILLIONŠČIKOV, V., Proof of the existence...almost periodic coefficients, Differential Equations, 4 (1968), 203-205. Zbl0236.34006MR229912
- MILLIONŠČIKOV, V., Typicality of almost reducible systems with almost periodic coefficients, Differential Equations, 14 (1978), 448-450. Zbl0434.34027MR508462
- MOSER, J., An example of a Schrödinger equation with almost periodic potential and nowhere dense spectrum, Comment. Math. Helvetici, 56 (1981), 198-224. Zbl0477.34018MR630951
- MOSER, J.- PÖSCHEL, J., An extension of a result by Dinaburg and Sinai on quasi-periodic potentials, Comment. Math. Helvetici, 59 (1984), 39-85. Zbl0533.34023MR743943
- NERURKAR, M., Positive exponents for a dense class of continuous -valued cocycles which arise as solutions to strongly accessible linear differential systems, Contemp. Math., vol. 215 (1998), AMS, 265-278. Zbl0953.34041MR1603050
- PALMER, K., Exponential dichotomies and transversal homoclinic points, Jour. of Diff. Eqns., 55 (1984), 225-256. Zbl0508.58035MR764125
- PALMER, K., Exponential dichotomies, the shadowing lemma and transversal homoclinic points, Dynamics Reported, Vol. 1 (1988), 265-306. Zbl0676.58025MR945967
- SACKER, R. J.- SELL, G. R., A spectral theory for linear differential systems, Journal of Differential Equations, 27 (1978), 320-358. Zbl0372.34027MR501182
- SINAI, YA., Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential, Journal of Statistical Physics, 46 (1987), 861-909. Zbl0682.34023MR893122
- WOJTKOWSKI, M., Invariant families of cones and Lyapunov exponents, Ergod. Th. & Dynam. Sys., 5 (1985), 145-161. Zbl0578.58033
- WOJTKOWKI, M., Principles for the Design of Billiards with Nonvanishing Lyapunov Exponents, Comm. Math. Phys., 105 (1986), 391-414. Zbl0602.58029MR848647
- YOUNG, L. S., Some open sets of nonuniformly hyperbolic cocycles, Ergod. Th. & Dynam. Sys., 13 (1993), 409-415. Zbl0797.58041
- YOUNG, L. S., Lyapounov exponents for some quasi-periodic cocycles, Ergod. Th. & Dynam. Sys., 17 (1997), 483-504. Zbl0873.28013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.